K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

A E B D C F

Theo Talet có :  DE //AC => \(\frac{CD}{CB}=\frac{AE}{AB}\)

                        : DF // AB => \(\frac{BD}{BC}=\frac{AF}{AC}\)

Giả sử EF // BC => \(\frac{AE}{AB}=\frac{AF}{AC}\Rightarrow\frac{CD}{CB}=\frac{BD}{BC}\)

=> CD = BD 

=> D là trung điểm của BC 

31 tháng 12 2018

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

 Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

AK//ME

=>AKME là hình thang

ΔCEF và ΔCAB 

ΔADE và ΔABC

30 tháng 11 2014

D là TĐ của AB mà DE //BC nên DE là đg TB của tam giác ABC -->E là TĐ của AC.

E là TĐ của AC mà EF //AB nên EF là đg TB của tam giác CAB--->F là TĐ của BC

22 tháng 12 2017

TB là j

17 tháng 1 2019

A B C D E G F H

Qua D kẻ đường thẳng song song với AC 

Xét tam giác BHD và EFC có: \(\widehat{DBH}=\widehat{CEF}\)( AB//EF, đồng vị)

BD=EC (gt)

\(\widehat{HDB}=\widehat{FCE}\)(HD//AC, đồng vị)

=> \(\Delta BHD=\Delta EFC\)=> EF=BH

Tương tự dựa vào song song  và sole trong em tự chứng minh  tam giác AHD= tam giác DGA

=> DG=AH

Vậy nên AB= AH+BH=EF+DG

17 tháng 1 2019

Trà Vy 7B,lời giải đây nhé,ko có gì 2 lên lớp chỉ tiếp

Do \(HD\backslash\backslash AC\)

\(\Rightarrow\widehat{ADH}=\widehat{DAG}\left(1\right)\)(So le trong)

\(\Rightarrow\widehat{HAD}=\widehat{GDA}\)\(\left(2\right)\)(So le trong)

Từ (1),(2) và AD chung

\(\Rightarrow\Delta ADH=\Delta DAG\left(G.C.G\right)\)

P/S:cô thông cảm hộ em,bạn ấy(Vương Tuấn Khải) bắt em hoàn thiện bài của cô ý ah