K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

ko có số 7 nha các bạn

1 tháng 8 2016

\(P=x+y+xy\Leftrightarrow P+1=\left(x+1\right)\left(y+1\right)=\left(\frac{b^2+c^2-a^2}{2bc}+1\right)\left(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}+1\right)\)
\(=\left(\frac{\left(b+c\right)^2-a^2}{2bc}\right)\left(\frac{a^2-\left(b-c\right)^2+\left(b+c\right)^2-a^2}{\left(b+c\right)^2-a^2}\right)=\frac{b^2+2bc+c^2-b^2+2bc-c^2}{2bc}=\frac{4bc}{2bc}=2\)
\(\Rightarrow P=1\)

1 tháng 8 2016

Nhận xét đề Toán. Có 2 cách giải cơ bản cho bài toán dạng này. 1 là thế trực tiếp x và y vào P và tính luôn, cách này quá thường, ai cũng nhìn ra, chỉ xài khi ta bí cách 2. Cách 2 là biến đổi P rồi mới thế.

Ở đây mình trình bày cách 2.

P = x + y + xy = x + (x +1) * y

    = x + P1

P1 =( \(\frac{b^2+c^2-a^2}{2bc}\)+ 1) * \(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)

     = \(\frac{\left(b+c\right)^2-a^2}{2bc}\)\(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)

     = \(\frac{a^2-\left(b-c\right)^2}{2bc}\)

P = x + P1 = \(\frac{b^2+c^2-a^2}{2bc}\)\(\frac{a^2-\left(b-c\right)^2}{2bc}\)\(\frac{2bc}{2bc}\)= 1

Chúc bạn ngày càng học giỏi và xinh gái. 

10 tháng 2 2019

Ta có

x+1=b2+c2−a22bc+1=b2+2bc+c2−a22bc=(b+c)2−a22bc

Suy ra

y(x+1)=a2−(b−c)2(b+c)2−a2.(b+c)2−a22bc=a2−(b−c)22bc

Do đó

29 tháng 6 2018

Ta có \(\frac{2a+b+c}{b+c}=\frac{2b+c+a}{c+a}=\frac{2c+a+b}{a+b}\Rightarrow\frac{2a}{b+c}+1=\frac{2b}{a+c}+1=\frac{2c}{a+b}+1\)

=> \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{3}{2}\)

^_^ 

21 tháng 12 2018

Bài 1: Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=k\)

\(\Rightarrow\hept{\begin{cases}a=2016k\\b=2017k\\c=2018k\end{cases}}\).Thay vào M,ta có:

 \(M=4\left(2016k-2017k\right)\left(2017k-2018k\right)-\left(2018k-2016k\right)^2\)

\(=4.\left(-1k\right)\left(-1k\right)-\left(2k\right)^2\)

\(=4k^2-4k^2=0\)