OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Mini game 20/11 tri ân thầy cô, nhận thưởng hấp dẫn - Tham gia ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\left(m-1\right)x-y=1\\x-\left(m+1\right)y=1\end{cases}}\)
với m là tham số
Tim để hệ phương trình có nghiệm duy nhất
Cho hệ phương trình
\(\hept{\begin{cases}\left(m-1\right)x-y=1\\x-\left(m+1\right)y=1\end{cases}}\)với m là tham số
Tim m để hệ phương trình có nghiệm duy nhất
ggmgghmh yk, jyjtyh hy juyui
Cho hệ phương trình bậc nhất 2 ẩn x,y
Tìm m để hệ phương trinhh có nghiệm duy nhất
Cho hệ phương trình \(\hept{\begin{cases}\left(a+1\right)x-y=a+1\\x+\left(a-1\right)=2\end{cases}}\)với m là tham số
a) giải hệ phương trình với m=2
b) tìm a để hệ có nghiệm duy nhất
c) tìm giá trị nguyên của a để hệ có nghiệm duy nhất thỏa mãn x+y đạt GTNN
Bài 1: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\)
a) Giải và biện luận hề phương trình.
b) Tìm các giá trị của m để nghiệm của hệ phương trình là các số nguyên
c) tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất
Bài 2: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)
a) Giải và biện luận hệ phương trình theo m
b) Trong trường hợp hệ có nghiệm duy nhất, tìm các giá trị của m để tích xy nhỏ nhất.
Cho hệ phương trình \(\hept{\begin{cases}x-3y=2\\\left(m^2+1\right)x-6y=2m\end{cases}}\) (m là tham số)Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x-3y>m+1
cho hệ phương trình \(\hept{\begin{cases}mx+2y+1\\3x+\left(m+1\right)y=-1\end{cases}}\)(m là tham số)
Tìm các giá trị nguyên của m để hệ phương trình có nghiệm duy nhất (x;y) sao cho x và y là các số nguyên.
cho hệ phương trình \(\hept{\begin{cases}\left(m+1\right)x+4y=9-m\\x+\left(m+1\right)y=4\end{cases}}\)
tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x,y là các số nguyên dương
Giải hệ phương trình :\(\hept{\begin{cases}\left(m+2\right)x+y=3\\\left(m-1\right)x+2y=m-4\end{cases}}\)
Tìm m để hệ phương trình chỉ có một nghiệm duy nhất
Cho hệ phương trình: \(\hept{\begin{cases}\left(m+1\right)x-y=m+1\\m+\left(m-1\right)y=2\end{cases}}\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn điều kiện P=x+y đạt Min