cho x,y thỏa mãn x^3 - 3xy^2 = 10 và y^3 - 3x^2y =30 tính x^2 + y^2
giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x3 - 3xy2 = 10
<=> (x3 - 3xy2)2 = 100
<=> x6 - 6x4y2 + 9x2y4 = 100 (1)
y3 - 3x2y = 30
<=> (y3 - 3x2y)2 = 900
<=> y6 - 6x2y4 + 9x4y2 = 900 (2)
Từ (1) và (2) cộng vế theo vế:
x6 - 6x4y2 + 9x2y4 + y6 - 6x2y4 + 9x4y2 = 100 + 900
<=> x6 + 3x4y2 + 3x2y4 + y6 = 1000
<=> (x2 + y2)3 = 103
<=> x2 + y2 = 10
Vậy P = x2 + y2 = 10
\(x^3-3xy^2=10\Leftrightarrow\left(x^3-3xy^2\right)^2=100\Leftrightarrow x^6-6x^4y^2+9x^2y^4=100\)
\(y^3-3x^2y=30\Leftrightarrow\left(y^3-3x^2y\right)^2=900\Leftrightarrow y^6-6x^2y^4+9x^4y^2=900\)
cộng vế theo vế ta có: \(x^6+3x^4y^2+3x^2y^4+y^6=1000\Leftrightarrow\left(x^2+y^2\right)^2=100\Leftrightarrow x^2+y^2=10\)
vậy P=10
1; \(x^2\) + 3\(x^2\) + 3\(x\) = 4\(x^2\) + 3\(x\) (1)
Thay \(x=99\) vào (1) ta có:
4.992 + 3.99 = 4.9801 + 297 = 39204 + 297 = 39501
3x=2y
nên x/2=y/3
Đặt x/2=y/3=k
=>x=2k; y=3k
\(P=\dfrac{\left(2k\right)^2-2k\cdot3k+\left(3k\right)^2}{\left(2k\right)^2+2k\cdot3k+\left(3k\right)^2}\)
\(=\dfrac{4k^2-6k^2+9k^2}{4k^2+6k^2+9k^2}=\dfrac{4-6+9}{4+6+9}=\dfrac{7}{19}\)
Bài 1:
b: \(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+4\right)\)
c: \(=\left(x+y-3\right)\left(x+y+3\right)\)
Mk chỉ trả lời theo ý kiến của mk thôi nha
Chưa chắc ĐÚNG
Tham khảo nhé
CHúc các bn hok tốt