Trong kì kiểm tra HKI, nhà trường có 2 phương án xếp phòng thi như sau: nếu chỉ mỗi phòng chỉ có 25 thí sinh thì có 14 thí sinh chưa có phòng thi. Nếu chỉ có 26 thí sinh thì phòng cuối cùng chỉ có 5 bạn. Tính số thí sinh và phòng thi của trường đó. Mong mọi người chỉ giúp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu bài kiểm tra của 24 thí sinh đó đều làm 2 tờ giấy thi thì số tờ giấy là:
24.2 = 48 (tờ)
Mà chỉ có 33 tờ giấy nên số tờ giấy nhiều hơn so với đề bài nếu 24 thí sinh đó đều làm 2 tờ giấy chính bằng số thí sinh làm 1 tờ giấy thi và là:
48 - 33 = 15 (thí sinh)
Số thi sinh làm 2 tờ giấy thi là:
24 - 15 = 9 (thí sinh)
Gọi số thí sinh làm bài chỉ gồm 1 tờ giấy thi là x ( đk : x \(\in\) N* ; X < 24 )
Số thí sinh làm bài gồm 2 tờ giấy thi là y ( đk y\(\in\) N* ; y < 24 )
Do một phòng thi có 24 thí sinh dự thi nên ta có phương trình
x + y = 24 ( 1 )
Sau khi thu bài cán bộ coi thi đếm được 33 tờ giấy thi nên ta có phương trình : x + 2y = 33 ( 2 )
Từ ( 1 ) và ( 2 ) ta có hệ phương trình
\(\hept{\begin{cases}x+y=24\\x+2y=33\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=9\end{cases}\left(TM\right)}}\)
Vậy có 15 thí sinh làm bài gồm 1 tờ giấy thi , có 9 thí sinh làm bài gồm 2 tờ giấy thi
Chọn C.
Phương pháp:
Gọi A : “bạn Nam có đúng 2 lần ngồi vào cùng 1 vị trí”
Trong 2 lượt đó, lượt đầu: Nam có 24 cách chọn vị trí, có 23! cách xếp vị trí cho 23 thí sinh còn lại; lượt sau: Nam có 1 cách chọn vị trí, có 23! cách xếp vị trí cho 23 thí sinh còn lại.
Đáp án B
Giả sử để đạt được 26 điểm thì số câu chọn đúng là a, sai là 10-a.
Ta có: 5a-1(10-a) = 26 => 6a = 36 => a = 6.
Vậy phải chọn được 6 câu đúng và 4 câu sai.
Xác suất chọn 1 câu được đúng là:
Xác suất chọn 1 câu được sai là:
Có cách chọn 6 câu đúng, 4 câu sai.
Vậy xác suất để được 26 điểm là:
Gọi số thí sinh là x ( \(\inℕ^∗\) ; học sinh ) và số phòng thi là y ( \(\inℕ^∗\); phòng )
+) Nếu mỗi phòng chỉ có 25 học sinh thì có 14 học sinh chưa có phòng thi:
=> x = 25.y + 14 (1)
+) Nếu mỗi phòng có 26 học sinh thì phòng cuối cùng chỉ có 5 bạn:
=> x = 26 ( y - 1) + 5 (2 )
Từ (1) ; (2) ta có hệ: \(\hept{\begin{cases}x-25y=14\\x-26y=-21\end{cases}}\Leftrightarrow\hept{\begin{cases}x=889\\y=35\end{cases}}\)( thỏa mãn)
Vậy có 889 thí sinh và 35 phòng thi