Cho mình hỏi xíu: (x+1).(x+1)=9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề yêu cầu là " trong các trường hợp sau, trường hợp nào cho ta ba số tự nhiên liên tiếp tăng dần?
câu a ) a*x^19+1
câu b )
đa thức chia có bậc 2 nên đa thức dư có bậc không quá 1. vậy đa thức dư có bậc nhất dạng ax+b
Ta có: x67+x47+x27+x7+x+1=(x2−1).Q(x)+ax+bx67+x47+x27+x7+x+1=(x2−1).Q(x)+ax+b
Cho x=1 rồi x=-1 ta được: \hept{1+1+1+1+1+1=a+b−1−1−1−1−1+1=−a+b\hept{1+1+1+1+1+1=a+b−1−1−1−1−1+1=−a+b
⇔\hept{a+b=6−a+b=−4⇔\hept{a=5b=1⇔\hept{a+b=6−a+b=−4⇔\hept{a=5b=1
Vậy dư trong phép chia trên là 5x+1
x + |-2 - 5| = |-5 - 3|
x + |-7| = |-8|
x + 7 = 8
x = 8 - 7
x = 1
P = (x +1 -1)/(x +1) + (y +1 -1)/(y +1) + (z +1 -1)/ (z+1)
= 3 - [ 1/(x+1) + 1/(y +1) + 1/(z +1) ]
Áp dụng BĐT cô si, ta có:
[(x +1) + (y +1) + (z +1)]. [1/(x+1) + 1/(y +1) + 1/(z +1) ] ≥9
=> 1/(x+1) + 1/(y +1) + 1/(z +1) ≥ 9/4 ( do x + y + z =1)
=> P ≤ 3/4
Dấu " =" xảy ra <=> x = y = z = 1/3
Vậy maxP = 3/4
Lưu ý: bạn cần cm BĐT phụ:
Cho x, y, z >0, ta có:
(x +y +z) (1/x +1/y +1/z) ≥ 9
Chứng minh nhanh như sau:
Theo bđt cô si đã biết, ta có: x + y + z ≥ 3∛(xyz) và 1/x +1/y + 1/z ≥ 3∛[1/(xyx)]
⇒(x + y + z)(1/x + 1/y +1/z) ≥ 3∛(xyz) . 3∛[1/(xyx)] =9
Dấu “=” của bđt xảy ra ⇔ x = y = z
\(P=\left(1-\frac{1}{x+1}\right)+...\)
= \(3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Schwarz ta có \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+y+z+3}\)\(=\frac{9}{4}\)
do đó P<= 3-9/4=3/4
dấu = xảy ra <=> x=y=z=1/3
Bn ns 28 ở vế trái đúng ko?
\(VT=4\left(x+7\right)+2\)
\(=4x+4.7+2\)
\(=4x+28+2\)
Sử dụng t/c phân phối của phép nhân đối vs phép cộng, bn lấy 4 nhân vs từng số ở trg ngoặc là đc!
Tưởng nếu viết đề thế này \(4\left(x+7\right)+2=3x+5\)
Thì : \(4\left(x+7\right)+2=VP\)chứ e ?
\(4x+28+2=VP\)
Có j ko hiểu ib cj trả lời nhé !
(x+1).(x+1)=9
(x+1)^2=9
3^2=9
suy ra x+1=3
x=3-1=2
Vậy x=2
(x+1).(x+1)=9
(x+1)2=9
(x+1)2=32
vậy x=3