Cho tam giác ABC cân tại A, tia phân giác góc A cắt BC tại D.
a) Chứng minh DB = DC.
b) Kẻ DH AB (HAB), DK AC (KAC). Chứng minh DHK cân.
c) Chứng minh HK // BC. Cho tam giác ABC cân tại A, tia phân giác góc A cắt BC tại D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: DB=DC(hai cạnh tương ứng)
b) Xét ΔDBH vuông tại H và ΔDCK vuông tại K có
DB=DC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDBH=ΔDCK(cạnh huyền-góc nhọn)
Suy ra: DH=DK(hai cạnh tương ứng)
a )
xét tam giác ADB và ADC
góc BAD =ADC (gt)
góc ABD= góc ACD(vì ABC cân tại a)
AB=AC (vì ABC cân)
=> chúng bằng nhau (gcg)
=>BĐ=ĐC (2 cạnh tương ứng)
b)
xét tam giác HBD và KDC
goc BHD =DKC=90
goc B=C
BD=DC(cmt)
=> chúng bằng nhau
=>DH=DK (2 cạnh tương ứng)
c)
câu này mik đag nghĩ sorry nhé
mik sẽ giải sau
Giải:
a) Xét ΔADB và ΔADC có:
AB = AC (ΔABC cân tại A)
∠DAB = ∠DAC (AD là tia phân giác của ∠BAC)
AD là cạnh chung
=> ΔADB = ΔADC (c - g - c)
=> DB = DC (2 cạnh tương ứng)
b) Xét ΔADH vuông tại H và ΔADK vuông tại K có:
∠DAB = ∠DAC (AD là tia phân giác của ∠BAC)
AD là cạnh huyền chung
=> ΔADH = ΔADK (cạnh huyền - góc nhọn)
=> DH = DK (2 cạnh tương ứng)
=> ΔDHK cân tại D
Chúc bạn học tốt!!!
a) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
ˆBAD=ˆCADBAD^=CAD^(AD là tia phân giác của ˆBACBAC^)
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: DB=DC(hai cạnh tương ứng)
b) Xét ΔDBH vuông tại H và ΔDCK vuông tại K có
DB=DC(cmt)
ˆB=ˆCB^=C^(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDBH=ΔDCK(cạnh huyền-góc nhọn)
Suy ra: DH=DK(hai cạnh tương ứng)
mình ko biết có đúng ko nx
Một trường THCS. Tổng kết cuối học kì I, tổng số học sinh giỏi và khá nhiều hơn sô học sinh đạt loại trung bình là 60 học sinh. Biết rằng số học sinh giỏi, khá, trung bình lần lượt tỉ lệ với 2: 5: 6. Tính số học sinh mỗi loại ?
b: Xét ΔADH vuông tại H và ΔADK vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)
Do đó: ΔADH=ΔADK
Suy ra: AH=AK
\(a.\)Xét \(\Delta ABD\)vuông tại \(A\) và \(\Delta HBD\) vuông tại \(H\)
có: \(AD\): cạnh chung
\(\widehat{ABD}=\widehat{HBD}\) ( vì \(AD\)là tia phân giác của \(\widehat{ABH}\))
\(\Rightarrow\)\(\Delta ABD=\Delta HBD\) (cạnh huyền - góc nhọn)
\(\Rightarrow\) \(AD=DH\) ( 2 cạnh tương ứng)
\(b.\) Xét \(\Delta DCH\)vuông tại \(H\)có: \(DH< DC\)(vì trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
mà \(AD=DH\) \(\Rightarrow\)\(AD< DC\)(đpcm)
\(c.\)Xét \(\Delta KBH\)và \(\Delta CBA\)có: \(\widehat{BHK}=\widehat{BAC}=90^0\) ( gt )
\(BH=AB\) ( vì \(\Delta ABD=\Delta HBD\))
\(\widehat{KBH}\): góc chung ( gt )
\(\Rightarrow\)\(\Delta KBH=\Delta CBA\) (g.c.g)
\(\Rightarrow\)\(BK=BC\)(2 cạnh tương ứng)
\(\Rightarrow\)\(\Delta KBC\)cân tại \(B\)
a) Có \(\Delta\)ABC cân tại A (gt), AD là phân giác \(\widehat{BAC}\)(D\(\in\)BC)
=> AD là đường phân giác của \(\Delta\)ABC
Mà trong tam giác cân đường phân giác trùng với đường trung tuyến
=> D là trung điểm của BC
=> DB=DC (đpcm)
b) Xét hai tam giác vuông ΔAKD và ΔAKD
Ta có: AD cạnh chung
\(\widehat{CAD}=\widehat{BAD}\left(gt\right)\)
\(\widehat{AHD}=\widehat{AKD}=90^o\)
Vậy ΔAKD=ΔAKD(cạnh huyền.góc nhọn)
Vậy DK=DH (cạnh tương ứng)
Nên ΔDHK cân
c. Do ΔAHK có AK=AH nên cân
Vậy \(\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{KAH}}{2}\)
Do ΔABC cân nên \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{KAH}}{2}\)
Nên \(\widehat{AKH}=\widehat{ACB}\) mà hai góc trên ở vị trí đồng vị nên HK//BC