Giải phương trình
a) x2 +2x +y2 -6y + 9= 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ 2x2 + y2 – 8x + 2y – 1 = 0 không phải phương trình đường tròn vì hệ số của x2 khác hệ số của y2.
+ Phương trình x2 + y2 + 2x – 4y – 4 = 0 có :
a = –1; b = 2; c = –4 ⇒ a2 + b2 – c = 9 > 0
⇒ phương trình trên là phương trình đường tròn.
+ Phương trình x2 + y2 – 2x – 6y + 20 = 0 có :
a = 1; b = 3; c = 20 ⇒ a2 + b2 – c = –10 < 0
⇒ phương trình trên không là phương trình đường tròn.
+ Phương trình x2 + y2 + 6x + 2y + 10 = 0 có :
a = –3; b = –1; c = 10 ⇒ a2 + b2 – c = 0 = 0
⇒ phương trình trên không là phương trình đường tròn.
Đường tròn (C) có tâm I( -1;3) và bán kính. R = 1 + 9 - 5 = 5
Do tiếp tuyến d song song với đường thẳng a nên d có dạng: x + 2y - m = 0
d là tiếp tuyến của (C) khi và chỉ khi:
Chọn A.
Phép đối xứng tâm I(1; 2) biến M(x; y) thành M’(x’; y’) thì:
Thay vào phương trình (C) ta được:
2 - x ' 2 + 4 - y ' 2 + 2 ( 2 - x ' ) - 6 ( 4 - y ' ) + 6 = 0
⇒ x ' 2 + y ' 2 - 6 x ' - 2 y ' + 6 = 0 hay x 2 + y 2 - 6 x - 2 y + 6 = 0
Đáp án A
Ta xét các phương án:
(I) có:
(II) có:
(III) tương đương : x2+ y2 – 2x - 3y + 0,5= 0.
phương trình này có:
Vậy chỉ (I) và (III) là phương trình đường tròn.
Chọn D.
ĐÁP ÁN D
Đường tròn (C) có tâm I( -1; 3).
Do đường thẳng ∆ qua M cắt đường tròn tại hai điểm A, B sao cho M là trung điểm của AB nên I M ⊥ Δ ( quan hệ vuông góc đường kính và dây cung).
Đường thẳng ∆: đi qua M(-2; 1) và nhận M I → ( 1 ; 2 ) làm VTPT nên có phương trình là :
1. (x + 2) + 2(y – 1) = 0 hay x+ 2y = 0