Cho tam giác abc có ab= ac, tia phân giác góc a cắt bc tại d
a, cmr tam giác abd = tam giác acd
b, từ d kẻ dm vuông góc với ab tại m, dn vuông góc với ac tại n. cm: dm = dn
c, cm mn vuông góc với ad
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABC=90-30=60 độ
góc DBM=180-45-60=75 độ
góc DCN=45+30=75 độ
b: Xét ΔDNC vuông tại N và ΔDBM vuông tại M có
DC=DB
góc DCN=góc DBM
=>ΔDNC=ΔDBM
=>DM=DN
c: Xét tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
DM=DN
=>AMDN là hình vuông
=>AD là phân giác của góc BAC
a. Vì AD là tia phân giác góc A
=> BAD = BAC
Xét tam giác BAD và tam giác BAC:
AB chung
BAD = CAD (cmt)
AB = AC( tam giác ABC cân tại A)
=> tam giác BAD = tam giác CAD (cgc)
b. Vì tam giác BAD = tam giác CAD (cmt)
=> BD = CD(hai góc tương ứng) (đpcm)
c. Vì DM ⊥ AB (M ∈ AB)
=> M = 90o
Vì DN ⊥ AC (N ∈ AC)
=> N = 90o
Xét tam giác BDM và tam giác CDN :
M = N (=90o)
BD = CD (cmb)
B = C(tam giác ABC cân tại A)
=>tam giác BDM = tam giác CDN(ch-gn)(đpcm)
=> DM = DN (2 cạnh tương ứng)
d. Xét tam giác AMD và tam giác AND:
DM = DN(cmc)
M = N(=90o)\
AD chung
=> tam giác AMD = tam giác AND (ch-cgv) (đpcm)
a) Do AD là tia phân giác của ∠BAC (gt)
⇒ ∠BAD = ∠CAD
Do ∆ABC cân tại A
⇒ AB = AC
Xét ∆ABD và ∆ACD có:
AB = AC (cmt)
∠BAD = ∠CAD (cmt)
AD là cạnh chung
⇒ ∆ABD = ∆ACD (c-g-c)
⇒ BD = CD
⇒ D là trung điểm của BC (1)
Do ∆ABD = ∆ACD (cmt)
⇒ ∠ADB = ∠ADC (hai góc tương ứng)
Mà ∠ADB + ∠ADC = 180⁰ (kề bù)
⇒ ∠ADB = ∠ADC = 180⁰ : 2 = 90⁰
⇒ AD ⊥ BC (2)
Từ (1) và (2) ⇒ AD là đường trung trực của BC
b) Sửa đề: Chứng minh ∆ADM = ∆ADN
Do ∠BAD = ∠CAD (cmt)
⇒ ∠MAD = ∠NAD
Xét ∆ADM và ∆ADN có:
AD là cạnh chung
∠MAD = ∠NAD (cmt)
AM = AN (gt)
⇒ ∆ADM = ∆ADN (c-g-c)
⇒ ∠AMD = ∠AND = 90⁰ (hai góc tương ứng)
⇒ DN ⊥ AN
⇒ DN ⊥ AC
d) Do K là trung điểm của CN (gt)
⇒ CK = KN
Xét ∆DKC và ∆EKN có:
CK = KN (cmt)
∠DKC = ∠EKN (đối đỉnh)
KD = KE (gt)
⇒ ∆DKC = ∆EKN (c-g-c)
⇒ ∠KDC = ∠KEN (hai góc tương ứng)
Mà ∠KDC và ∠KEN là hai góc so le trong
⇒ EN // CD
⇒ EN // BC (3)
∆AMN có:
AM = AN (gt)
⇒ ∆AMN cân tại A
⇒ ∠AMN = (180⁰ - ∠MAN) : 2
= (180⁰ - ∠BAC) : 2 (4)
∆ABC cân tại A (gt)
⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (5)
Từ (4) và (5) ⇒ ∠AMN = ∠ABC
Mà ∠AMN và ∠ABC là hai góc đồng vị
⇒ MN // BC (6)
Từ (3) và (6) kết hợp với tiên đề Euclide ⇒ M, N, E thẳng hàng
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó:ΔABD=ΔACD
b: Xét ΔADM vuông tại M và ΔADN vuông tại N có
AD chung
\(\widehat{DAM}=\widehat{DAN}\)
DO đó: ΔADM=ΔADN
Suy ra: DM=DN
hay ΔDMN cân tại D
c: Ta có: AM=AN
DM=DN
Do đó: AD là đường trung trực của MN
hay AD⊥MN
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔABD=ΔACD
b: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>MD=DN
=>ΔDMN cân tại D
con điênnnnnnnnnnnnnn
2k mấy