tìm x biết :3x-1+2.3x-2=40
giúp mk nha mk sắp phải nộp rồi T . T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\left\{{}\begin{matrix}3x^2-x\ne0\\1-3x\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}3x\ne1\\1\ne3x\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne\frac{1}{3}\\x\ne\frac{1}{3}\end{matrix}\right.\)
=> \(x\ne\frac{1}{3}.\)
Ta có : \(\frac{2016}{3x^2-x}:\frac{x^2+3x}{1-3x}\)
= \(\frac{2016}{3x^2-x}.\frac{1-3x}{x^2+3x}\)
= \(\frac{2016}{x\left(3x-1\right)}.\frac{1-3x}{x\left(x+3\right)}\)
= \(\frac{2016}{x\left(3x-1\right)}.\frac{3x-1}{-x\left(x+3\right)}\)
= \(\frac{2016\left(3x-1\right)}{x\left(3x-1\right)\left(-x\left(x+3\right)\right)}\)
= \(\frac{2016}{x\left(-x\left(x+3\right)\right)}\)
= \(\frac{2016}{x\left(-x^2-3x\right)}\)
= \(\frac{2016}{-x^3-3x^2}\)
a, 2x+13 chia hết cho x-3
Từ (2x+13) chia hết cho (x-3) => (2x+13)-2(x-3) chia hết cho (x-3)
=> 2x+13-2x+6 chia hết cho (x-3)
=> 19 chia hết cho (x-3)
Suy ra (x-3) là ước của 19
(x-3) thuộc {+_1 ; +_19} => x thuộc {4 ; 2 ; 22 ; -16}
Vậy x thuộc {-16 ; 2 ; 4 ; 22}
b, 2x-1 chia hết cho x-3
Từ (2x-1) chia hết cho (x-3) => (2x-1)-2(x-3) chia hết cho (x-3)
=> 2x-1-2x+6 chia hết cho (x-3)
=> 5 chia hết cho (x-3)
Suy ra (x-3) là ước của 5
(x-3) thuộc {+_1 ; +_5} => x thuộc {4 ; 2 ; 8 ; -2 }
Vậy x thuộc {-2 ; 2 ; 4 ; 8}
bài 2
a,
3x-17=x+3
3x-x = 3+17
2x=10
x=5
b,
(x-3)(2x+6)=0
suy ra \(\left\{{}\begin{matrix}x-3=0\\2x+6=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Bài 1:
Giải:
Ta có: \(\frac{x}{y}=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{2y}{28}=\frac{x-2y+z}{21-28+15}=\frac{32}{8}=4\)
+) \(\frac{x}{21}=4\Rightarrow x=84\)
+) \(\frac{y}{14}=4\Rightarrow y=56\)
+) \(\frac{z}{15}=4\Rightarrow z=60\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(84;56;60\right)\)
Bài 2:
Giải:
Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)
\(\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\)
\(\Rightarrowđpcm\)
BÀI 1 LÀ áp dụng tính chất của dãy tỉ sỗ = nhau
BT2 là cũng vậy r ss
<=> 2x + 12 = 3x - 21
<=> 2x - 3x = -21 - 12
<=> -x = -33
<=> x = 33
Ta có :
\(\left|1-2x\right|-\left|3x+1\right|=0\)
\(\Leftrightarrow\)\(\left|1-2x\right|=\left|3x+1\right|\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}1-2x=3x+1\\1-2x=-3x-1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x+2x=1-1\\-2x+3x=-1-1\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x=0\\x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy \(x=0\) hoặc \(x=-2\)
Chúc bạn học tốt ~
\(5-3x^2+6x=-3x^2+6x+5=-3\left(x^2-2x-5\right)\)
\(=-3\left(x^2-2x+1-6\right)\)
\(=-3\left(x^2-2x+1\right)+18\)
\(=-3\left(x-1\right)^2+18\le18\forall x\)
Dấu = xảy ra khi: \(-3\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy : GTLN là 18 tại x = 1
Nguyễn Hoàng Khánh Dương sai rồi nha bạn! Bạn thay x = 1 vào biểu thức xem có ra được giá trị MAX = 18 không???
Gọi biểu thức trên là A.Ta có: \(A=5-3x^2+6x=-3x^2+6x+5\)
\(=-3x^2+6x-3+8\)
\(=-3\left(x^2-2x+1\right)+8\)
\(=-3\left(x-1\right)^2+8\le8\) (do \(-3\left(x-1\right)^2\le0\forall x\))
Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy \(A_{max}=8\Leftrightarrow x=1\)
10 + (2x - 1) 2 : 3 = 13
=> (2x - 1) 2 : 3 = 13 - 10
=> (2x - 1) 2 : 3 = 3
=> (2x - 1) 2 = 3 . 3
=> (2x - 1) 2 = 3 2
=> 2x - 1 = 3
=> 2x = 3 + 1
=> 2x = 4
=> x = 2
10 + (2x - 1)2 : 3 = 13
=> (2x - 1)2 : 3 = 13 - 10
=> (2x - 1 )2 : 3 = 3
=> (2x - 1)2 = 9
=> (2x - 1)2 = 32
=> 2x - 1 = 3
=> 2x = 4
=> x = 2
Vậy x = 2