cho tứ giác abcd đường chéo ac và bd gọi e là trung điểm ac từ e kẻ đường song song với cd cắt cd tại f nối bf chứng tỏ rằng bf chia abcd thành 2 phần bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
a) Gọi I và J là giao điểm các đường chéo của hình chữ nhật MDNF và hình chữ nhật ABCD
Tam giác IND và tam giác JCD là các tam giác cân \(\Rightarrow\widehat{N_1}=\widehat{D_1}\) và \(\widehat{C_1}=\widehat{D_2}\)
Mặt khác \(\widehat{N_1}=\widehat{D_2}\) (Hai góc đồng vị)
Vậy \(\widehat{C_1}=\widehat{D_1}\Rightarrow DF//AC\)
b) Tứ giác EIDJ là hình bình hành vì có các cạnh đối song song
Có: EJ = ID nhưng IF = ID \(\Rightarrow IF=EJ\)
Từ đó tứ giác EFIJ là hình bình hành \(\Rightarrow FE=IJ\left(1\right)\)
Mặt khác trong tam giác FBD: có FB // IJ (2)
Từ (1) và (2) => điểm E, điểm B, điểm F thẳng hàng
Mà EF = IJ và EB = IJ
=> E là trung điểm BF
a: ABCD là hình chữ nhật
=>O là trung điểm chug của AC và BD; AC=BD
=>OM=ON
Xét ΔAON và ΔCOM có
OA=OC
góc AON=góc COM
ON=OM
=>ΔAON=ΔCOM
Xet tứ giác ANCM có
O là trung điểm chung của AC và NM
=>ANCM là hình bình hành
b: Xét ΔDMC có OH//MC
nên DO/OM=DH/HC
=>DH/HC=2/1=2
=>DH=2HC
Xét ΔDOH có
N là trung điểm của DO
NE//OH
=>E là trung điểm của DH
=>DE=EH=1/2DH=HC
=>EH=1/3*DC
Xét ΔMFB và ΔMCD có
góc MFB=góc MCD
góc FMB=góc CMD
=>ΔMFB đồng dạng với ΔMCD
=>FB/CD=MB/MD=1/3
=>FB=1/3CD=EH
bạn sai đề rồi kìa song song với cd mà lại cắt cd đc
Trl :
bạn kia làm đúng rồi nhé
hk tốt nhé bạn @