K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2020

Lời giải:

Theo tính chất đường phân giác trong:

BDDC=ABAC=69=23BDDC=ABAC=69=23

⇒BDBD+DC=22+3=25⇒BDBD+DC=22+3=25

⇔BDBC=25⇒BD=BC.25=3⇔BDBC=25⇒BD=BC.25=3 (cm)

Theo tính chât phân giác ngoài:

EBEC=ABAC=69=23EBEC=ABAC=69=23

⇔EBEB+BC=23⇔EBEB+BC=23

⇔EBEB+7,5=23⇔EBEB+7,5=23

⇒3EB=2(EB+7,5)⇒EB=15⇒3EB=2(EB+7,5)⇒EB=15 (cm)

Ta có: ED=EB+BD=15+3=18ED=EB+BD=15+3=18 (cm)

12 tháng 8 2015

AE là phân giác BAC 

=>   \(\frac{EB}{EC}=\frac{AB}{AC}=\frac{5}{6}\)

=> \(\frac{EB}{5}=\frac{EC}{6}=\frac{EB+EC}{5+6}==\frac{BC}{11}=\frac{7}{11}\) ( Áp dụng dãy tỉ số bàng nhau )

=> EB = 7/11 . 5 = 35/11 

=> EC = 7/11 . 6 = 42 / 11 

 

29 tháng 2 2016

phuong trinh:

    BE/BA=CE/CA(THEO TINH CHAT DUONG PHAN GIAC CUA TAM GIAC)

Hay BE/5=CE/7

Ap dung tinh chat cua day ti so bang nhau ta co:

 BE/5=CE/7=(BE+CE)/5+7=BC/12=7/12

Tu BE/5=7/12=>BE=(7*5)/12=35/12

     CE/7=7/12=>CE=(7*7)/12=49/12

Xét ΔBAC có AD là đường phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{CA}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=7

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{7}{7}=1\)

=>BD=3(cm); CD=4(cm)

Xét ΔABC có AE là đường phân giác góc ngoài tại đỉnh A

nên \(\dfrac{EB}{EC}=\dfrac{AB}{AC}\)

=>\(\dfrac{EB}{EC}=\dfrac{6}{8}=\dfrac{3}{4}\)

=>\(\dfrac{EB}{3}=\dfrac{EC}{4}\)

mà EC-EB=BC=7cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{EB}{3}=\dfrac{EC}{4}=\dfrac{EC-EB}{4-3}=\dfrac{7}{1}=7\)

=>EB=21(cm)

=>ED=EB+BD=21+3=24(cm)

10 tháng 5 2016

Ta có: AE là phân giác góc BAC nên theo tính chất phân giác, ta có:

\(\frac{EB}{EC}=\frac{AB}{AC}=\frac{5}{6}\)

\(=>\frac{EB}{5}=\frac{EC}{6}=\frac{EB+EC}{5+6}=\frac{BC}{11}=\frac{7}{11}\)

\(=>EB=\frac{35}{11}\)

\(=>EC=\frac{42}{11}\)

9 tháng 8 2018

Giải bài 18 trang 68 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 18 trang 68 SGK Toán 8 Tập 2 | Giải toán lớp 8

11:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot6\cdot12}{6+12}\cdot\dfrac{1}{2}=4\left(cm\right)\)

12:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot3\cdot6}{3+6}\cdot\dfrac{1}{2}=\dfrac{3\cdot6}{3+6}=\dfrac{18}{9}=2\left(cm\right)\)

22 tháng 4 2017

AE là đường phân giác của tam giác ABC nên

AEAB = ECAC

Áp dụng tính chất tỉ lệ thức

AEAB = ECAC = EB+ECAB+AC= BCAB+AC

=> EB = AB.BCAB+AC = 5.75+6

EC = BC- BE ≈ 3,8