tập toán lớp 9 cho đường tròn (O,R).Một điểm A ở ngoài đường tròn sao cho OA=2R.Vẽ các tiếp tuyến AB,AC đến (O) (với AB là các tiếp điểm) a/ tính số đo các góc AOB và AOC b/ Tính số đo cung nhỏ và cung lớn BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải b2:
a, MPHQ là hình chữ nhật => MH = PQ
b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA
c,\(\widehat{PMH}=\widehat{MBH}\Rightarrow\widehat{PQH}=\widehat{O_2QP}\) => PQ là tiếp tuyến của \(\left(O_2\right)\)
Tương tự PQ cũng là tiếp tuyến \(\left(O_1\right)\)
a: Xét ΔOBA vuông tại B có
\(\cos AOB=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{AOB}=30^0\)
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: OA là tia phân giác của góc BOC
=>\(\widehat{BOC}=2\cdot\widehat{BOA}=120^0\)
b: SỐ đo cung nhỏ BC là 120 độ
Số đo cung lớn BC là 360-120=240(độ)
a: Xét ΔOBA vuông tại B có
\(\cos\widehat{BOA}=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔOCA vuông tại C có
\(\cos\widehat{COA}=\dfrac{OC}{OA}=\dfrac{1}{2}\)
nên \(\widehat{COA}=60^0\)
b: Số đo cung nhỏ BC là 120 độ
Số đo cung lớn BC là 240 độ
Câu a:
Xét tg vuông AOB có BO=R=OA/2 => ^OAB=30 (góc đối diện với cạnh góc vuông băng nửa cạnh huyền thì bằng 30)
=> ^AOB=90-^OAB=90-30=60
Tương tj c/m đươc ^AOC=60
Câu b:
Từ câu a => ^BOC=^AOB+^AOC=120 => sđ cung BC nhỏ = 120 (sđ góc ở tâm = sđ cung chắn)
=> sđ cung BC lớn = 360-sđ cung BC nhỏ = 360-120=240