Cho M= 2+22+23+24+.....+22017+22018
a) tính M
b) chứng tỏ M chia hết cho3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=(1+2)+(2^2+2^3)+.....+(2^{10}+2^{11})$
$=(1+2)+2^2(1+2)+...+2^{10}(1+2)$
$=(1+2)(1+2^2+....+2^{10})$
$=3(1+2^2+....+2^{10})\vdots 3$ (đpcm)
A = 1 + 2 + 22 + 23 + ... + 211
A = 20 + 21 + 22 + 23 + ... + 211
Xét dãy số: 0; 1; 2; 3;...;11 dãy số này là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Số số hạng của dãy số trên là: (11 - 10) : 1 + 1 = 12 (số hạng)
Vậy A có 12 hang tử nhóm hai hạng tử liên tiếp của A với nhau vì
12 : 2 = 6 nên:
A = (1 + 2) + ( 22 + 23) +...+ (210 + 211)
A = 3 + 22.(1 + 2) + ...+ 210.(1 + 2)
A = 3 + 22. 3 +...+ 210.3
A = 3.( 1 + 22 +...+ 210)
vì 3 ⋮ 3 nên 3.(1 + 22 + ...+ 210) ⋮ 3 hay A = 1 + 2+ ...+ 211 ⋮ 3(đpcm)
\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)
Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)
nên \(A⋮3\).
\(Toru\)
A=(2+22)+22(2+22)+...+22020(2+22)
A= 6.1+22.6+...+22020.6
A=6(1+22+...+22020) chia hết cho 3
vậy A chia hết cho 3
\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{95}+2^{96}\right)\\ S=\left(1+2\right)\left(2+2^3+...+2^{95}\right)\\ S=3\left(2+2^3+...+2^{95}\right)⋮3\left(1\right)\\ S=\left(2+2^2\right)+2^3\left(1+2^2+...+2^{93}\right)\\ S=8+8\left(1+2^2+...+2^{93}\right)⋮8\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow S⋮24\)
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7 chia hết cho 7 =>7.(2+...+258) chia hết cho 7
CHIA HẾT CHO 3 :
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)
Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}+91\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)+91\)
\(=2\cdot\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)+91\)
\(=7\cdot\left(1+2^4+...+2^{97}\right)+7\cdot13\)
\(=7\cdot\left(1+2^4+...+2^{97}+13\right)⋮7\)(đpcm)
Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)
\(=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{97}\right)\)
\(=7\cdot\left(2+2^4+...+2^{97}\right)⋮7\)(đpcm)
\(A=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+6.2^2+...+6.2^{98}\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)
\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=2\cdot3+2^3\cdot3+...+2^{99}\cdot3\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)
a) M=2+22+23+24+....+22017+22018
=> 2M=2(2+22+23+24+....+22017+22018)
=> 2M=22+23+24+25+....+22018+22019
=> 2M-M=22019-2
b) M=2+22+23+24+....+22017+21018
=> M=(2+22)+(23+24)+....+(22017+22018)
=> M=2(1+2)+23(1+2)+....+22017(1+2)
=> M=2.3+23.3+....+22017.3
=> M=3(2+23+.....+22017)
=> M chia hết cho 3
a, M= 2 + 2^2 + 2^3 +....+ 2^2018
2M= 2^2 + 2^3 + 2^4 +...+ 2^2019
2M-M= ( 2^2 + 2^3 + 2^4 +....+ 2^2019) - ( 2+ 2^2 + 2^3 +...+ 2^2018)
M= 2^2019 - 2
b, Tổng trên có 2018 số, nhóm mỗi nhóm 2 số, ta có:
M= (2 + 2^2) + (2^3 + 2^4) +...+ (2^2017 + 2^2018)
M= 2(1+2) + 2^3(1+2) +...+ 2^2017(1+2)
M= 2. 3 + 2^3.3 +...+ 2^2017.3
M= 3( 2 + 2^3 +...+ 2^2017) chia hết cho 3
Vậy M chia hết cho 3