K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2020

Xét hàm \(f\left(t\right)=\frac{ln\left(a^t+b^t\right)}{t}\) với \(t>0\)

\(f'\left(t\right)=\frac{t.\frac{a^t.lna+b^t.lnb}{a^t+b^t}-ln\left(a^t+b^t\right)}{t^2}=\frac{a^tlna^t-a^tln\left(a^t+b^t\right)+b^tlnb^t-b^tln\left(a^t+b^t\right)}{\left(a^t+b^t\right)t^2}\)

\(=\frac{a^t.\left(lna^t-ln\left(a^t+b^t\right)\right)+b^t\left(lnb^t-ln\left(a^t+b^t\right)\right)}{\left(a^t+b^t\right)t^2}< 0\)

\(\Rightarrow f\left(t\right)\) nghịch biến \(\Leftrightarrow f\left(x\right)< f\left(y\right)\Leftrightarrow x>y>0\)

\(\Leftrightarrow\frac{ln\left(a^x+b^x\right)}{x}< \frac{ln\left(a^y+b^y\right)}{y}\)

\(\Leftrightarrow y.ln\left(a^x+b^x\right)< x.ln\left(a^y+b^y\right)\)

\(\Leftrightarrow ln\left(a^x+b^x\right)^y< ln\left(a^y+b^y\right)^x\)

\(\Leftrightarrow\left(a^x+b^x\right)^y< \left(a^y+b^y\right)^x\)

19 tháng 10 2020

Bạn kiểm tra lại đề nhé.

G/s: x = y \(\ne\)0 => a = b 

=> \(2a^2.2x^2=4a^2\) ???

16 tháng 7 2021

a) 2 cái đều nhân lại lớn hơn 0, x.y = xy

=> đfcm

b) 2 cái giống nhau nên=> đfcm

Đúng thì like giúp mik nha bạn. Thx bạn

7 tháng 10 2016

Theo giả thiết suy ra \(\frac{a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)\(\Rightarrow\)\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}=\frac{z+x-\left(y+z\right)}{ac-bc}=\frac{x-y}{c\left(a-b\right)}\) (1)

\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}=\frac{y+z-\left(x+y\right)}{bc-ab}=\frac{z-x}{b\left(c-a\right)}\) (2)

\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}=\frac{x+y-\left(z+x\right)}{ab-ac}=\frac{y-z}{a\left(b-c\right)}\) (3)

Từ (1), (2), (3) suy ra \(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\) (đpcm).

8 tháng 10 2016

(đpcm) Tức là : đá phải con mèo

26 tháng 10 2015

http://olm.vn/hoi-dap/question/199702.html

Trong này nè

19 tháng 11 2021

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

Câu a : Ta có : \(x^3+x^2z+y^2z-xyz+y^3=0\)

\(\Leftrightarrow\left(x^3+y^3\right)+\left(x^2z+y^2z-xyz\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+z\right)=0\)

\(\Leftrightarrow x+y+z=0\) ( đpcm )

Câu b : \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

Câu c : Ta có : \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a+b+c=0\) ( đúng )

NV
2 tháng 1 2022

Đề bài sai

Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)

Khi đó  \(x< y\) nhưng \(z< y\)

2 tháng 1 2022

\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)

\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)

                \(b\left(a+c\right)=ba+bc\left(3\right)\)

\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)

\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)

\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

\(\Rightarrow x< y< z\)