I là tâm đường tròn ngoại tiếp tam giác ABC có diện tích S và nửa chu vi P. CMR: \(IA+IB+IC\le\frac{6S}{P}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
29 tháng 6 2019
Xét tam giác ABC có I là tâm đường tròn nội tiếp
\(\Rightarrow S_{ABC}=S_{AIB}+S_{BIC}+S_{CIA}=\frac{1}{2}AB.r+\frac{1}{2}BC.r+\frac{1}{2}CA.r\)
\(=\frac{1}{2}\left(AB+BC+CA\right).r=p.r\)
\(\Rightarrow r=\frac{S_{ABC}}{p}\)
29 tháng 6 2019
Gọi I là tâm đường tròn bàng tiếp góc A của tam giác ABC
Ta có:
SABC=SABI+SACI−SBIC
=Rb/2 + Rc/2 − Ra/ 2
=R. (b+c−a/2)
=R(p−a)
=> R = S/(p-a) (đpcm)
DH
1
NN
Nguyễn Ngọc Anh Minh
CTVHS
VIP
19 tháng 8 2023
Xét tg IAB
IA+IB>AB (trong tg tổng độ dài hai cạnh bao giờ cũng lớn hơn độ dài cạnh còn lại) (1)
Tương tự
IB+IC>BC (2)
IA+IC>AC (3)
Cộng 2 vế của (1) (2) (3)
2(IA+IB+IC)>AB+BC+AC=10 cm
=> IA+IB+IC>5 cm
Gọi a,b,c là độ dài 3 cạnh BC, AC,AB và r bán kính đường nội tiếp tam giác ABC
Vẽ BH _|_ IA, CK _|_ IA (H;K \(\in\)IA) . AI cắt BC tại M
Ta có: r.c=IA.BH(=2SIAB); r.b=IA.CK(=2SIAC)
BH+CK < BM+MC =BC=a
Do đó rc+rb < IA.a => IA > \(\frac{r\left(b+c\right)}{a}\)
Tương tự ta có: IB > \(\frac{r\left(a+c\right)}{a};IC\ge\frac{r\left(a+b\right)}{c}\)
IA+IB+IC > \(r\left(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}\right)\ge6\cdot r;S=pr\Rightarrow r=\frac{S}{p}\)
Dấu "=" xảy rakhi a=b=c => Tam giác ABC đều