Cho tam giác ABC có diện tích 54 cm2. Trên các cạnh AB, BC, CA lần lượt lấy các điểm M, N, P sao cho AM = 2/3 AB, BN = 2/3 BC và CP = PA. Tính diện tích tam giác MNP.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tui tick nha
Diện tích tam giác ABN = 1/4 diện tích tam giác ABC vì có chung chiều cao nối từ A xuống N và BN = 1/4 BC
Diện tích tam giác ABN là:
64 x 1/4 = 16 (cm2 )
Diện tích tam giác BMN = 1/2 diện tích tam giác ABN vì có chung chiều cao nối từ N xuống M và BM = 1/2 BA
Diện tích tam giác BMN là:
16 x 1/2 = 8 (cm2 )
Đáp số: 8 cm2
\(\dfrac{CP}{CA}=\dfrac{2}{3}\Rightarrow\dfrac{AP}{CA}=\dfrac{1}{3}\)
Hai tg ABP và tg ABC có chung đường cao từ B->CA nên
\(\dfrac{S_{ABP}}{S_{ABC}}=\dfrac{AP}{CA}=\dfrac{1}{3}\Rightarrow S_{ABP}=\dfrac{1}{3}xS_{ABC}\)
Hai tg AMP và tg ABP có chung đường cao từ P->AB nên
\(\dfrac{S_{AMP}}{S_{ABP}}=\dfrac{AM}{AM}=\dfrac{1}{4}\Rightarrow S_{AMP}=\dfrac{1}{4}xS_{ABP}=\dfrac{1}{4}x\dfrac{1}{3}xS_{ABC}=\dfrac{1}{12}xS_{ABC}\)
\(S_{BCP}=S_{ABC}-S_{ABP}=S_{ABC}-\dfrac{1}{3}xS_{ABC}=\dfrac{2}{3}xS_{ABC}\)
\(\dfrac{BN}{BC}=\dfrac{2}{3}\Rightarrow\dfrac{CN}{BC}=\dfrac{1}{3}\)
Hai tg CNP và tg BCP có chung đường cao từ P->BC nên
\(\dfrac{S_{CNP}}{S_{BCP}}=\dfrac{CN}{BC}=\dfrac{1}{3}\Rightarrow S_{CNP}=\dfrac{1}{3}xS_{BCP}=\dfrac{1}{3}x\dfrac{2}{3}xS_{ABC}=\dfrac{2}{9}xS_{ABC}\)
\(\dfrac{AM}{AB}=\dfrac{1}{4}\Rightarrow\dfrac{BM}{AB}=\dfrac{3}{4}\)
Hai tg BCM và tg ABC có chung đường cao từ C->AB nên
\(\dfrac{S_{BCM}}{S_{ABC}}=\dfrac{BM}{AB}=\dfrac{3}{4}\Rightarrow S_{BCM}=\dfrac{3}{4}xS_{ABC}\)
Hai tg BMN và tg BCM có chung đường cao từ M->BC nên
\(\dfrac{S_{BMN}}{S_{BCM}}=\dfrac{BN}{BC}=\dfrac{2}{3}\Rightarrow S_{BMN}=\dfrac{2}{3}xS_{BCM}=\dfrac{2}{3}x\dfrac{3}{4}xS_{ABC}=\dfrac{1}{2}xS_{ABC}\)
\(S_{MNP}=S_{ABC}-S_{AMP}-S_{CNP}-S_{BMN}=\)
\(=S_{ABC}-\dfrac{1}{12}xS_{ABC}-\dfrac{2}{9}xS_{ABC}-\dfrac{1}{2}xS_{ABC}=\)
\(=\dfrac{11}{36}xS_{ABC}\)
cô làm rồi em nhé
https://olm.vn/cau-hoi/cho-tam-giac-abc-co-dien-tich-180-cm2-tren-cac-canh-ab-bc-ca-lan-luot-lay-cac-diem-m-n-p-sao-cho-am-23-ab-bn-34-bc-va-cp-13-ca-tinh-di.8088189515587
AP = AC - PC = AC - \(\dfrac{1}{3}\)AC = \(\dfrac{2}{3}\)AC
SAMP = \(\dfrac{2}{3}\)SACM (vì hai tam giác có chung chiều cao hạ từ đỉnh M xuống đáy AC và AP = \(\dfrac{2}{3}\)AC)
SACM = \(\dfrac{2}{3}\)SABC (vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AB và AM = \(\dfrac{2}{3}\)AB)
SAMP = \(\dfrac{2}{3}\times\dfrac{2}{3}\)SABC = 180 \(\times\dfrac{4}{9}\) = 80 (cm2)
SBMN = \(\dfrac{3}{4}\)SBCM (vì hai tam giác có chung chiều cao hạ từ đỉnh M xuống đáy BC và BN = \(\dfrac{3}{4}\)BC)
BM = AB - AM = AB - \(\dfrac{2}{3}\)AB = \(\dfrac{1}{3}\)AB
SBCM = \(\dfrac{1}{3}\)SABC( vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AB và BM = \(\dfrac{1}{3}\)AB)
SBMN = \(\dfrac{3}{4}\times\dfrac{1}{3}\)SABC = 180 \(\times\dfrac{1}{4}\) = 45 (cm2)
CN = BC - BN = BC - \(\dfrac{3}{4}\)BC = \(\dfrac{1}{4}\)BC
SCPN = \(\dfrac{1}{4}\)SCPB ( vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy BC và CN = \(\dfrac{1}{4}\)BC)
SCBP = \(\dfrac{1}{3}\)SABC ( vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy AC và CP = \(\dfrac{1}{3}\)CA)
SCPN = \(\dfrac{1}{4}\times\dfrac{1}{3}\)SABC = 180 \(\times\) \(\dfrac{1}{12}\) = 15 (cm2)
Diện tích tam giác MNPQ là:
180 - ( 80 + 45 + 15) = 40 (cm2)
Đáp số 40 cm2
SAMP = \(\dfrac{1}{2}\)SABP (vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy AB và AM = \(\dfrac{1}{2}\)AB)
AP = AC - PC = AC - \(\dfrac{2}{3}\) AC = \(\dfrac{1}{3}\)AC
SAPB = \(\dfrac{1}{3}\)SABC (vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy AC và AP = \(\dfrac{1}{3}\) AC)
⇒ SAMP = \(\dfrac{1}{2}\times\)\(\dfrac{1}{3}\)SABC = 36 \(\times\) \(\dfrac{1}{6}\) = 6 (cm2)
SBMN = \(\dfrac{1}{2}\)SABN (vì hai tam giác có chung chiều cao hạ từ đỉnh N xuống đáy AB và BM = \(\dfrac{1}{2}\) AB)
SABN = \(\dfrac{1}{3}\)SABC (vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BC và BN = \(\dfrac{1}{3}\)BC)
SBMN = \(\dfrac{1}{2}\times\) \(\dfrac{1}{3}\)SABC = 36 \(\times\) \(\dfrac{1}{6}\) = 6 (cm2)
CN = BC - BN = BC - \(\dfrac{1}{3}\)BC = \(\dfrac{2}{3}\)BC
SCNP = \(\dfrac{2}{3}\)SBCP (vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy BC và CN = \(\dfrac{2}{3}\) BC)
SBCP = \(\dfrac{2}{3}\)SABC ( vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy AC và PC = \(\dfrac{2}{3}\)CA)
SCNP = \(\dfrac{2}{3}\times\dfrac{2}{3}\) = \(\dfrac{4}{9}\)\(\times\)36 = 16 (cm2)
Diện tích tam giác MNP là:
36 - (6+6+16) = 8 (cm2)
Đáp số: 8 cm2