K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

a) Xét tứ giác BHCK có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: BHCK là hình bình hành(cmt)

nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)

Ta có: BK//CH(cmt)

nên BK//CF

Ta có: BK//CF(cmt)

CF⊥AB(gt)

Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)

Ta có: CK//BH(cmt)

nên CK//BE

Ta có: CK//BE(cmt)

BE⊥AC(gt)

Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)

c) Vì H và I đối xứng nhau qua BC

nên BC là đường trung trực của HI

⇔C nằm trên đường trung trực của HI

hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BHCK là hình bình hành(cmt)

nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)

Từ (1) và (2) suy ra CI=BK

Gọi O là giao điểm của BC và HI

mà BC là đường trung trực của HI

nên O là trung điểm của HI

Xét ΔHIK có 

O là trung điểm của HI(cmt)

M là trung điểm của HK(H và K đối xứng nhau qua M)

Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)

⇒OM//IK(Định lí 2 về đường trung bình của tam giác)

hay IK//BC

Xét tứ giác BIKC có IK//BC(cmt)

nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)

Hình thang BIKC(IK//BC) có IC=BK(cmt)

nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

20 tháng 3 2021

a) Xét tứ giác BHCK có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: BHCK là hình bình hành(cmt)

nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)

Ta có: BK//CH(cmt)

nên BK//CF

Ta có: BK//CF(cmt)

CF⊥AB(gt)

Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)

Ta có: CK//BH(cmt)

nên CK//BE

Ta có: CK//BE(cmt)

BE⊥AC(gt)

Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)

c) Vì H và I đối xứng nhau qua BC

nên BC là đường trung trực của HI

⇔C nằm trên đường trung trực của HI

hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BHCK là hình bình hành(cmt)

nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)

Từ (1) và (2) suy ra CI=BK

Gọi O là giao điểm của BC và HI

mà BC là đường trung trực của HI

nên O là trung điểm của HI

Xét ΔHIK có 

O là trung điểm của HI(cmt)

M là trung điểm của HK(H và K đối xứng nhau qua M)

Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)

⇒OM//IK(Định lí 2 về đường trung bình của tam giác)

hay IK//BC

Xét tứ giác BIKC có IK//BC(cmt)

nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)

Hình thang BIKC(IK//BC) có IC=BK(cmt)

nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng ΔADB

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

góc FEH=góc BAD

góc DEH=góc FCB

mà góc BAD=góc FCB

nên góc FEH=góc DEH

=>EH là phân giác của góc FED

13 tháng 10 2023

D ở đây ra vậy em?

13 tháng 10 2023

Sửa đề: Từ C,B kẻ các đường thẳng vuông góc với AC,AB cắt nhau tại K

a: CK vuông góc AC

BH vuông góc AC

Do đó: CK//BH

BK vuông góc AB

CH vuông góc AB

Do đó: BK//CH

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng

 

20 tháng 10 2021

help meeee!