chứng minh rằng khi k thay đổi thì hệ phương trình (2k+1)x+(k-2)y=k+1 luôn đi qua một điểm cố định.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử đường thẳng (k + 1)x – 2y = 1 đi qua điểm cố định M(x0; y0)
Vậy điểm cố định mà đường thẳng (k + 1)x – 2y = 1 đi qua là
Giả sử đường thẳng (k + 1)x – 2y = 1 đi qua điểm cố định M ( x 0 ; y 0 )
Vậy điểm cố định mà đường thẳng (k + 1)x – 2y = 1 đi qua là
chứng minh rằng khi k thay đổi các đường thẳng (k+1)x-2y=1 luôn đi qua một điểm cố định. tìm điển đó
Giải:
Trong phương trình biểu diễn các đường thẳng \(\left(k+1\right)x-2y=1\) ta nhận thấy:
Khi \(x=0\) thì:
Điều này chứng tỏ rằng các đường thẳng có phương trình:
\(\left(k+1\right)x-2y=1\) luôn luôn đi qua điểm cố định I có tọa độ \(\left(0;\frac{1}{2}\right)\forall k\in R\)
Hướng dẫn trả lời:
Trong phương trình biểu diễn các đường thẳng (k + 1)x – 2y = 1, ta nhận thấy: Khi x = 0 thì
Điều này chứng tỏ rằng các đường thẳng có phương trình:
(k + 1)x – 2y = 1 luôn luôn đi qua điểm cố định I có tọa độ (0;−12)∀k∈R
Giả sử d đi qua điểm cố định có tọa độ \(\left(x_0;y_0\right)\)
\(\Rightarrow\) Với mọi m ta có:
\(y_0=\left(m+1\right)x_0-3m+4\)
\(\Leftrightarrow m\left(x_0-3\right)+x_0-y_0+4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0-3=0\\x_0-y_0+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=3\\y_0=7\end{matrix}\right.\)
Vậy với mọi m thì đường thẳng luôn đi qua điểm cố định có tọa độ \(\left(3;7\right)\)