K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

Bạn xem lại đề bài:

Giải thích:

Nếu x = 1/3 và y = 1

Ta có: 

 P ( 1/3, 1 ) = (\(9.\left(\frac{1}{3}\right)^2.1^2+1^2-6.1.\frac{1}{3}-2+1=-1< 0\)

27 tháng 9 2019

bạn giải thích cách làm của bạn giúp tớ được không ???

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Lời giải:

$y^2+2y+4^x-2^{x+1}+2=0$

$\Leftrightarrow (y^2+2y+1)+(4^x-2.2^x+1)=0$

$\Leftrightarrow (y+1)^2+(2^x-1)^2=0$

$\Rightarrow (y+1)^2=(2^x-1)^2=0$

$\Rightarrow y=-1; x=0$

31 tháng 8 2016

bài này dùng bdt nhé bạn

ta có \(\sqrt{\left(y-1\right)\cdot1}\le\frac{y-1+1}{2}=\frac{y}{2}\) ( bdt cô-si)

==> \(x\sqrt{y-1}\le\frac{xy}{2}\)

tương tự \(2y\sqrt{x-1}\le xy\)

do đó \(x\sqrt{y-1}+2y\sqrt{x-1}\le\frac{3}{2}xy\)

dấu ''='' xảy ra khi x=y=2

Đk :\(x\ge1;y\ge1\)

đề bài <=> \(\frac{xy}{2}-x\sqrt{y-1}+xy+2y\sqrt{x-1}=0\) 

          <=> \(\frac{x}{2}\left(y-2\sqrt{y-1}\right)+y\left(x-2\sqrt{x-1}\right)=0\)

          <=> \(\frac{x}{2}\left[\left(y-1\right)-2\sqrt{y-1}+1\right]+y\left[\left(x-1\right)-2\sqrt{x-1}+1\right]=0\)

          <=>\(\frac{x}{2}\left(\sqrt{y-1}-1\right)^2+y\left(\sqrt{x-1}-1\right)^2=0\)*

vì theo đk ta sẽ có để pt xảy ra thì :

          \(\left(\sqrt{y-1}-1\right)^2=0\)và  \(\left(\sqrt{x-1}-1\right)^2=0\)<=> x=2 và y=2

Mình giải nv đó, bạn xem và trình bày lại dùm mình nhé

5 tháng 8 2020

Đề như này thì bạn phải thêm y^3 vào mới tính được giá trị biểu thức.

Mình thêm y^3 theo ý mình. Bạn xem thử nhé!

\(R=\left(8x^3+12x^2y+6xy^2+y^3\right)+3\left(4x^2+4xy+y^2\right)y+3\left(2x+y\right)y^2+y^3\)

\(\left(2x+y\right)^3+3\left(2x+y\right)^2y+3\left(2x+y\right)y^2+y^3\)

\(\left(2x+y+y\right)^3=8\left(x+y\right)^3=8.50^3=...\)

4 tháng 12 2019

Ta có: \(\left( 1 \right) \Leftrightarrow \left( {1 - y} \right)\sqrt {x - y} + \left( {x - y - 1} \right) + y - 1 = \left( {x - y - 1} \right)\sqrt y \)

\( \Leftrightarrow \left( {1 - y} \right)\left( {\sqrt {x - y} - 1} \right) + \left( {x - y - 1} \right)\left( {1 - \sqrt y } \right) = 0\\ \Leftrightarrow \left( {1 - \sqrt y } \right)\left( {1 + \sqrt y } \right)\left( {\sqrt {x - y} - 1} \right) + \left( {\sqrt {x - y} - 1} \right)\left( {\sqrt {x - y} + 1} \right)\left( {1 - \sqrt y } \right) = 0\\ \Leftrightarrow \left( {1 - \sqrt y } \right)\left( {\sqrt {x - y} - 1} \right)\left( {1 + \sqrt y + \sqrt {x - y} + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} \sqrt y = 1\\ \sqrt {x - y} = 1\\ 2 + \sqrt y + \sqrt {x - y} = 0 \text{(vô nghiệm do vế trái dương)} \end{array} \right. \)

\(\Leftrightarrow y = 1 \vee x = y + 1 \)

* Với \(y=1\) thay vào (2) ta được \(-3x+9=0 \Leftrightarrow x = 3\)

Vậy nghiệm hệ phương trình là \((3;1)\)

* Với \(x=y+1\) thay vào (2) ta được:

\( 2{y^2} - 3\left( {y + 1} \right) + 6y + 1 = 2\sqrt {y + 1 - 2y} - \sqrt {4\left( {1 + y} \right) - 5y - 3} \\ \Leftrightarrow 2{y^2} + 3y - 2 = \sqrt {1 - y} \left( * \right) (ĐK: y \in \left[ {0;1} \right]) \)

\( \Leftrightarrow 2\left( {{y^2} + y - 1} \right) = \sqrt {1 - y} - y \Leftrightarrow 2\left( {{y^2} + y - 1} \right) = \dfrac{{1 - y - {y^2}}}{{\sqrt {11 - y} + y}}\\ \Leftrightarrow \left( {{y^2} + y - 1} \right)\left( {2 + \dfrac{1}{{\sqrt {1 - y} + y}}} \right) = 0\\ \Leftrightarrow {y^2} + y - 1 = 0\left( {do2 + \dfrac{1}{{\sqrt {1 - y} + y}} > 0\forall y \in \left[ {0;1} \right]} \right)\\ \Leftrightarrow y = \dfrac{{ - 1 + \sqrt 5 }}{2} \)

Vậy nghiệm hệ phương trình là: \(\left( {\dfrac{{1 + \sqrt 5 }}{2};\dfrac{{ - 1 + \sqrt 5 }}{2}} \right) \)

5 tháng 5 2017

Giải:

Ta có:

\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)

\(\Leftrightarrow x^2y^2-x^2+2y^2-2=0\)

\(\Leftrightarrow x^2\left(y^2-1\right)+2\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(y^2-1\right)\left(x^2+2\right)=0\)

Dễ thấy: \(x^2\ge0\forall x\Leftrightarrow x^2+2\ge2>0\) (Vô nghiệm)

\(\Leftrightarrow x\) tùy ý

\(\Leftrightarrow y^2-1=0\Leftrightarrow\) \(\left[{}\begin{matrix}y=1\\x=-1\end{matrix}\right.\)

Vậy \(x\) tùy ý và \(y=1\) hoặc \(y=-1\)