Xét đa thức P(x) có bậc 2017 thỏa mãn \(P\left(1\right)=P\left(2017\right),P\left(2\right)=P\left(2016\right),...,P\left(2017\right)=P\left(1\right)\) và \(P\left(0\right)=1\)
Tính giá trị của \(P\left(2018\right)\)
Cảm ơn mọi người!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét đa thức bậc 8: \(P\left(x\right)=x^8+\dfrac{x^3-x}{2}\)
Ta có, \(P\left(x\right)-P\left(-x\right)=x^8+\dfrac{x^3-x}{2}-\left(-x\right)^8-\dfrac{\left(-x\right)^3-\left(-x\right)}{2}=x^3-x\)
Thay \(x=1;2;3;4\) đều thỏa mãn
\(\Rightarrow P\left(5\right)-P\left(-5\right)=5^3-5=120\)
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
Đặt \(H\left(x\right)=P\left(x\right)-\left(x^2+2\right)\)
\(\Rightarrow H\left(1\right)=H\left(3\right)=H\left(5\right)=0\)
\(\Rightarrow H\left(x\right)\) có 3 nghiệm 1; 3; 5
\(\Rightarrow H\left(x\right)=\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-a\right)\)
\(\Rightarrow P\left(x\right)=H\left(x\right)+x^2+2=\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-a\right)+x^2+2\)
\(\Rightarrow P\left(-2\right)+7P\left(6\right)=-105\left(-2-a\right)+4+2+7\left[15\left(6-a\right)+36+2\right]=1112\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :
\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)
Đặt \(Q\left(x\right)=P\left(x\right)-3x-2\)
\(\Rightarrow Q\left(1\right)=Q\left(2\right)=Q\left(4\right)=0\)
\(\Rightarrow Q\left(x\right)\) có 3 nghiệm \(x=\left\{1;2;4\right\}\)
Do \(P\left(x\right)\) bậc 4 và có hệ số cao nhất bằng 1 \(\Rightarrow Q\left(x\right)\) cũng là đa thức bậc 4 có hệ số cao nhất bằng 1
\(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)\) với \(x_0\in R\)
\(\Rightarrow P\left(x\right)=Q\left(x\right)+3x+2=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)+3x+2\)
\(\Rightarrow P\left(5\right)=12\left(5-x_0\right)+17\) ; \(P\left(-1\right)=-30\left(-1-x_0\right)-1\)
\(\Rightarrow S=60\left(5-x_0\right)+85-60\left(-1-x_0\right)-2=443\)
Cám ơn thầy ạ, em xin phép gửi đến thầy đề thi chọn học sinh giỏi toán lớp 9 của thành phố Hà Nội vừa thi xong thầy ạ