Cho đường tròn (O,R) đường kính AB = 5 cm và C là một điểm thuộc đường tròn sao cho AC = 3 cm
a) Tam giác ABC là tam giác gì? Vì sao? Tính R và Sin của góc CAB b) Đường thẳng qua C vuông góc với AB tại H, cắt đường tròn (O) tại D .Tính CD và chứng minh rằng AB là tiếp tuyến của đường tròn (C,CH)
c) Vẽ tiếp tuyến BE của đường tròn (C) và E là tiếp điểm khác H. Tính diện tích tứ giác AOCE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAC có OA=OC=AC(=R)
nên ΔOAC đều
b: Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
Xét ΔACB vuông tại C có CH là đường cao
nên \(CH^2=AH\cdot HB\)
a) Tam giác OAC là tam giác vuông. Vì AC là đường cao của tam giác vuông OAC, và đường cao luôn vuông góc với cạnh đối diện nên tam giác OAC là tam giác vuông tại A. b) Ta có CH vuông góc với AB tại H và AC vuông góc với BC. Theo định lý Euclid, trong một tam giác vuông, bình phương của độ dài đường cao bằng tích của độ dài đoạn thẳng từ đỉnh vuông góc đến điểm chia cạnh huyền. Vì vậy, CH^2 = AH * HB. c) Vì K là trung điểm của BC, nên BK = KC. Do đó, K nằm trên đường tròn (O) với đường kính BC. d) Gọi I là trung điểm của CH. Ta biết rằng AI là đường phân giác của góc OAC. Vì OAC là tam giác vuông tại A, nên AI cũng là đường phân giác của góc OAB. Do đó, AI cắt đường tròn (O) tại một điểm E. Để tính AE.BD + OK.OD, ta cần biết thêm thông tin về vị trí của các điểm A, B, C, D, E, O, K và H trên đường tròn (O) và tam giác OAC.
______________________HT____________________________
b) Gọi OD ⊥ AC tại I ( I thuộc OD)
Có: OD⊥ AC (gt) và CB⊥ AC ( △ABC vuông tại C)
Do đó OD // CB
Xét △ABC, có:
OD// CB (cmt)
O là trung điểm AB ( AB là đường kính)
Do đó OI là đường trung bình ABC
=>I là trung điểm AC
Có: OD ⊥ AC(gt) , I trung điểm AC (cmt) (I thuộc OD)
Nên OD là đường trung trực của AC
c)
Xét t/giác AOC, có:
AO=OC (=R)
Do đó t/giác AOC cân tại O
Mà OI ⊥ AC
Nên OI cũng là đường phân giác góc AOC
=> AOI = COI
Xét t/giác ADO và t/giác DOC, có:
OD chung
AOI = COI (cmt)
OA=OC (=R)
Do đó t/giác ADO = t/giác CDO (c-g-c)
=> DAO = DCO
Mà DAO= 90
Nên DCO = 90
Có C thuộc (O) ( dây cung BC)
Nên CD là tiếp tuyến
a: Xét (O) có
ΔACB nội tiếp đường tròn
AB là đường kính
Do đó: ΔACB vuông tại C