Cho đường thẳng ( d) y=mx-m+1 và parabol ( P) y=x2
a, Tìm điểm m để đường thẳng d và parabol ( P) cắt nhau tại 2 điểm phân biệt
b, gọi x1, x 2 hoành đọ các điểm của ( d) và (P) tìm m sao cho: x21x2+ x22 x1=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt hoành độ giao điểm:
\(x^2-mx+m-1=0\)
\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2>0\Leftrightarrow m\ne2\)
\(\left\{{}\begin{matrix}\left|x_1\right|=x_2\Rightarrow x_2\ge0\\x_2>x_1\end{matrix}\right.\) \(\Rightarrow x_2=-x_1>0\)
\(\Leftrightarrow x_1+x_2=0\)
\(\Rightarrow m=0\)
a) Phương trình hoành độ giao điểm:
\(x^2=mx-m+1\)
\(\Leftrightarrow x^2-mx+m-1=0\)
\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow m-2\ne0\)
hay \(m\ne2\)
Vậy: Để (d) cắt (P) tại hai điểm phân biệt thì \(m\ne2\)
a) Xét phương trình hoành độ giao điểm (d) và (P)
\(x^2 = 2(m+1)x - 4\)
\(<=> x^2 -2(m+1) + 4 = 0\) (1)
có \(\Delta' = [-(m+1)]^2 -4\)
\(\Delta' = (m+1)^2- 4\)
(d) và (P) cắt nhau tại hai điểm phân biệt
<=> Phương trình (1) có hai nghiệm phân biệt
<=> \(\Delta' \)> 0
<=> \((m + 1)^2 - 4 >0\)
<=> \((m+1)^2 >4\)
<=> \(\left[ \begin{array}{l}m+1 > 2\\m+1 <- 2\end{array} \right. \)
\(<=> \left[ \begin{array}{l}m > 1\\m < -3\end{array} \right. \)
b) Vì x1;x2 là hoành độ giao điểm của (d) và (P)
nên x1;x2 là hai nghiệm của phương trình (1)
Áp dụng hệ thức Viet có x1 + x2 = 2(m+1)
x1x2 = 4
Mà \(\sqrt{x_1} - \sqrt{x_2} = 2\)(x1;x2 \(\geq \) 0)
=> \((\sqrt{x_1} - \sqrt{x_2})^2 = 4\)
<=> x1 - 2x1x2 + x2 = 4
<=> (x1 + x2) - 2x1x2=4
<=> 2(m+1) - 2.4 = 4
<=> 2m + 2 - 8 = 4
<=> 2m = 10
<=> m = 5 (T/m)
Đoạn \((\sqrt{x_1}-\sqrt{x_2})^2=4\)
\(\Rightarrow x_1-2\sqrt{x_1x_2}+x_2=4\) chứ bạn.
a: PTHĐGĐ là:
x^2+mx-m-2=0(1)
Khi m=2 thì (1) sẽ là
x^2+2x-2-2=0
=>x^2+2x-4=0
=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)
b: Δ=m^2-4(-m-2)
=m^2+4m+8
=(m+2)^2+4>0 với mọi x
=>(d) luôn cắt (P) tại hai điểm phân biệtx
x1^2+x2^2=7
=>(x1+x2)^2-2x1x2=7
=>(-m)^2-2(-m-2)=7
=>m^2+2m+4-7=0
=>m^2+2m-3=0
=>m=-3 hoặc m=1
Phương trình hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)
a. Khi \(m=-1\), (1) trở thành:
\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)
Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)
b.
\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) cắt (P) tại 2 điểm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)
\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)
Phương trình hoành độ giao điểm là:
\(x^2-mx+2m-4=0\)
\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)
\(=m^2-8m+16=\left(m-4\right)^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0
hay m<>4
Ta có: \(x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=m^2-2\left(2m-4\right)\)
\(=m^2-4m+8\)
\(=\left(m-2\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi m=2
a: Phương trình hoành độ giao điểm là:
\(x^2-mx+1=0\)
\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)
Để (P) và (d) cắt nhau tại 2 điểm phân biệt thi Δ>0
=>(m-2)(m+2)>0
hay \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
b: Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=1\end{matrix}\right.\)
Theo đề, ta có:
\(x_1x_2\left(x_1+x_2\right)-x_1x_2=3\)
\(\Leftrightarrow m-1=3\)
hay m=4
a: PTHĐGĐ là:
x^2-4x+4m^2+1=0
Δ=(-4)^2-4(4m^2+1)
=16-16m^2-4=-16m^2+12
Để (d) cắt (P) tại hai điểm phân biệt thì -16m^2+12>0
=>-16m^2>-12
=>m^2<3/4
=>\(-\dfrac{\sqrt{3}}{2}< m< \dfrac{\sqrt{3}}{2}\)
b: x1,x2 nguyên
=>x1+x2 nguyên và x2*x1 nguyên
=>4 nguyên và 4m^2+1 nguyên
=>4m^2 nguyên
=>m^2 nguyên
=>\(m=k^2\left(k\in Z\right)\)
PTHĐGĐ là:
\(-x^2=-mx+m-1\)
\(\Leftrightarrow x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4\cdot1\left(m-1\right)\)
\(=m^2-4m+4\)
\(=\left(m-2\right)^2\ge0\forall m\)
Do đó: Phương trình luôn có nghiệm với mọi m
Áp dụng hệ thức Vi-et, ta có:,
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=17\)
\(\Leftrightarrow m^2-2\left(m-1\right)-17=0\)
\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)
a) PT hoành độ giao điểm (d) (P)
mx-n+1=x2
<=> x2-mx+m-1=0
\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)
Vậy (d); (P) luôn cắt nhau tại 2 điểm phân biệt
b) \(x_1^2x_2+x_2^2x_1=2\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=2\)
\(\Leftrightarrow\left(m-1\right)m=2\)
<=> m2-m-2=0
\(\Leftrightarrow\orbr{\begin{cases}m=2\\m=-1\end{cases}}\)
a) phương trình hoành độ giao điểm của (d)và (P) là:
\(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)
TA CÓ: a=1, b'=\(\frac{-m}{2},\)c= m-1
\(\Rightarrow\)\(\Delta'\)=\(\left(b'\right)^2-ac=\left(\frac{-m}{2}\right)^2-\left(m-1\right).1\)\(=\frac{m^2}{4}-m+1\)
\(=\)\(\frac{m^2}{4}-2.\frac{m}{2}.1+1=\left(\frac{m}{2}-1\right)^2\)
\(\text{ để đường thẳng d và parabol ( P) cắt nhau tại 2 điểm phân biệt}:\)
\(\Delta'>0\Leftrightarrow\)\(\left(\frac{m}{2}-1\right)^2>0\Leftrightarrow m\ne2\)
vậy với m \(\ne2\) thì ......