K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2020

\(15\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+30\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=40\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2007\)

\(\Leftrightarrow15\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=40\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2007\)

\(\Leftrightarrow15\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\frac{40}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2007\)

\(\Leftrightarrow\frac{5}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le2007\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{\frac{6021}{5}}\)

Ta có:

\(5a^2+2ab+2b^2=4a^2+2ab+b^2+a^2+b^2\ge4a^2+2ab+b^2+2ab=\left(2a+b\right)^2\)

\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}=\frac{1}{a+a+b}+\frac{1}{b+b+c}+\frac{1}{c+c+a}\)

\(\Rightarrow P\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{3}\sqrt{\frac{6021}{5}}\)

Dấu "=" xảy ra khi \(a=b=c=3\sqrt{\frac{5}{6021}}\)

NV
19 tháng 4 2020

Mẫu thức như vầy thì tìm max còn được chứ tìm min sao nổi bạn?

20 tháng 5 2019

Ta có:\(7\left(\frac{1}{a^2}+...\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2015\)

Mà \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le2015\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{6045}\)

\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+...\)

Mà \(\left(2+1\right)\left(2a^2+b^2\right)\ge\left(2a+b\right)^2\)(bất dẳng thức buniacoxki)

=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

Lại có \(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\le\frac{\sqrt{6045}}{3}\)

Vậy \(MaxP=\frac{\sqrt{6045}}{3}\)khi \(a=b=c=\frac{\sqrt{6045}}{2015}\)

11 tháng 7 2017

ÁP dụng BĐT AM-Gm  ta có: 

\(Σ\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}\ge\frac{4}{9}\cdotΣ\frac{a^2}{\left(ab+1\right)^2}\)

ĐẶt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\) thì cần cm

\(Σ\frac{a^2}{\left(ab+1\right)^2}=Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{3}{4}\)

\(Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\left(\frac{xz}{y\left(x+z\right)}\right)^2\)

Theo C-S \(Σ\frac{xz}{y\left(x+z\right)}=\frac{\left(xz\right)^2}{xyz\left(x+z\right)}\ge\frac{\left(Σxy\right)^2}{2xy\left(Σx\right)}\ge\frac{3}{2}\)

\(\frac{1}{3}\cdot\left(Σ\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\cdot\frac{9}{4}=\frac{3}{4}\)

Đúng hay ta có ĐPCM xyar ra khi a=b=c=1

8 tháng 8 2020

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

8 tháng 8 2020

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

17 tháng 7 2020

vào thống kê để xem hình ảnh

5 tháng 2 2020

Áp dụng BĐT Cô-si cho 3 số dương, ta có :

\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(a+c\right)}\ge3\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\)

Cần chứng minh : \(\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\ge\frac{9}{2\left(a+b+c\right)^2}\)

hay \(8\left(a+b+c\right)^6\ge729abc\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Thật vậy, ta có : \(\left(a+b+c\right)^3\ge\left(3\sqrt[3]{abc}\right)^3=27abc\)

\(8\left(a+b+c\right)^3=\left(2\left(a+b+c\right)\right)^3=\left(a+b+b+c+a+c\right)^3\)

\(\ge\left(3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\right)^3=27\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Nhân từng vế 2 bất đẳng thức trên, ta được đpcm

Dấu "=" xảy ra khi a = b = c 

Vậy ...

5 tháng 2 2020

2. Áp dụng BĐT Cô-si cho 3 số không âm, ta có : 

\(B\ge3\sqrt[3]{\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(a^3+c^3+1\right)}}\)

Ta có : \(a^3+b^3+1\ge3\sqrt[3]{a^3b^3}=3ab\Rightarrow\sqrt{a^3+b^3+1}\ge\sqrt{3ab}\)

Tương tự : ....

\(\Rightarrow\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(c^3+a^3+1\right)}\ge\sqrt{27a^2b^2c^2}=\sqrt{27}\)

\(\Rightarrow B\ge3\sqrt[3]{\sqrt{27}}=3\sqrt{3}\)

Vậy GTNN của B là \(3\sqrt{3}\)khi a = b = c = 1