K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

ĐK: \(\hept{\begin{cases}x\ne2\\x\ne-m-1\end{cases}}\)

\(\frac{x+2}{x-2}+\frac{m-x}{x+m+1}=0\)(1) 

=> ( x + 2 ) ( x + m + 1 ) + ( m - x ) ( x - 2 ) = 0 

<=> (m + 3 ) x + 2 ( m + 1 ) + ( m + 2 ) x - 2m = 0 

< => ( 2m + 5 ) x + 2 = 0  (2)

TH1: 2m + 5 = 0 <=> m = -5/2 

Khi đó (2) trở thành:  0x + 2 = 0 => phương trình vô nghiệm với mọi x 

=> m = -5/2 thỏa mãn

TH2: 2m + 5 \(\ne\)0 <=> m \(\ne\)-5/2 

khi đó: (2) có nghiệm: \(x=-\frac{2}{2m+5}\)

( 1) vô nghiệm <=> (2) có nghiệm x = 2 hoặc x = -m -1

<=> \(\orbr{\begin{cases}-\frac{2}{2m+5}=-m-1\\-\frac{2}{2m+5}=2\end{cases}}\)

Giải: \(-\frac{2}{2m+5}=-m-1\) 

<=> 2 = ( m + 1 ) ( 2m + 5 ) 

<=> 2m^2 +7m +3= 0 

<=> m = -1/2 hoặc m = -3  (tm m khác -5/2)

Giải: \(-\frac{2}{2m+5}=2\)

<=> 2m + 5 = - 1 <=> m = - 3 (tm)

Vậy m = -5/2; m = -3; m = -1/2 thì phương trình vô nghiệm.

27 tháng 4 2018

a,để PT trở thành bậc nhất một ản thì m-3\(\ne0\Leftrightarrow m\ne3\)

                    thay x=2 vào biểu thức ta có m=-143(tm)

17 tháng 5 2016

a) thay vô lập đenta giải ra

17 tháng 5 2016

b) giải hệ pt 1/x1+1/2x2=1/30

x1+x2=2

xong thay vô

x1*x2=m ok

NV
22 tháng 5 2021

\(\Delta'=m^2-\left(m^2-m+2\right)=m-2\)

Pt đã cho có 2 nghiệm khi \(\Delta'\ge0\Leftrightarrow m\ge2\)

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+2\end{matrix}\right.\)

\(A=x_1x_2-2\left(x_1+x_2\right)\)

\(A=m^2-m+2-4m\)

\(A=m^2-5m+2=\left(m-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\ge-\dfrac{17}{4}\)

\(A_{min}=-\dfrac{17}{4}\) khi \(m=\dfrac{5}{2}\)

28 tháng 5 2015

\(\Delta\)' = (m +2)2  - (6m +1) = m2 - 2m + 3 = m2 - 2m + 1 + 2 = ( m - 1)2 + 2 > 0 với mọi m

=> Pt đã cho luôn có 2 nghiệm phân biệt. Gọi là x1; x2

Theo hệ thức Vi - ét ta có: x1 + x2 = 2(m+2) ; x1x2 = 6m +1

Để x1 > 2; x2 > 2 <=> x1 - 2 > 0;  x2 - 2 > 0

<=> (x1 - 2 ) + (x2 - 2)  > 0 và  (x1 - 2).(x2 - 2)  > 0

+)  (x1 - 2 ) + (x2 - 2)  > 0  <=> (x1 + x2 ) - 4   > 0 <=> 2.(m +2) - 4 > 0 <=> 2m > 0 <=> m > 0         (*)

+)  (x1 - 2).(x2 - 2)  > 0 <=> x1x2 - 2(x1 + x2 ) + 4   > 0 <=> 6m + 1 - 4(m +2) + 4 > 0

<=> 2m - 3 > 0 <=> m > 3/2              (**)

Từ (*)(**) => Với m > 3/2 thì PT đã cho có 2 nghiệm phân biệt > 2

11 tháng 8 2017

giúp em giải với 

Cho phương trình: \(8x^2-8x+m^2+1=0\)(*) (x là ẩn số). Định m để phương trình (*) có hai nghiệm \(x_1,x_2\)thỏa điều kiện: \(x_{1^4-x_2^4=x_1^3-x_2^3}\)

Để đây làpt bậc nhất 1 ẩn thì m^2-4=0 và m-2<>0

=>m=-2