thực hiện phép tính:
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right)\times\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)
\(=\left[\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right]\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{\left(x^2-x+1\right)-3+3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2-x+1-3+3x+3}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{3\left(x+1\right)^2}{\left(x+1\right)\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{3x}{x\left(x+2\right)}-\frac{2x-2}{x\left(x+2\right)}\)
\(=\frac{3x-2x+2}{x\left(x+2\right)}\)
\(=\frac{x+2}{x\left(x+2\right)}\)
\(=\frac{1}{x}\)
\(a,\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(x\left(x+1\right)+x\left(x-3\right)=4x\)
\(x^2+x+x^2-3x=4x\)
\(2x^2-2x=4x\)
\(2x^2-2x-4x=0\)
\(2x\left(x-3\right)=0\)
\(2x=0\Leftrightarrow x=0\)
hoặc
\(x-3=0\Leftrightarrow x=3\)
b) \(ĐKXĐ:x\ne\pm4\)
\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
\(\Leftrightarrow5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)
\(\Rightarrow5\left(x^2-16\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)
\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)
\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4+80-96\)
\(\Leftrightarrow-2x=-16\)\(\Leftrightarrow x=8\)( thoả mãn ĐKXĐ )
Vậy tập nghiệm của phương trình là: \(S=\left\{8\right\}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+.....+\frac{1}{\left(x+99\right)\left(x+100\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+.....+\frac{1}{x+99}-\frac{1}{x+100}\)
\(=\frac{1}{x}-\frac{1}{x+100}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{1}{x}-\frac{1}{x+100}=\frac{x+100-x}{x\left(x+100\right)}=\frac{100}{x\left(x+100\right)}\)
Lời giải:
a)
\(\frac{1}{(1-x)(2-x)}+\frac{2}{(2-x)(3-x)}+\frac{3}{(1-x)(x-3)}=\frac{1}{(x-1)(x-2)}+\frac{2}{(x-2)(x-3)}-\frac{3}{(x-1)(x-3)}\)
\(=\frac{x-3}{(x-1)(x-2)(x-3)}+\frac{2(x-1)}{(x-1)(x-2)(x-3)}-\frac{3(x-2)}{(x-1)(x-2)(x-3)}\)
\(=\frac{x-3+2(x-1)-3(x-2)}{(x-1)(x-2)(x-3)}=\frac{1}{(x-1)(x-2)(x-3)}\)
b)
\(\frac{x^2}{x+1}+\frac{2x}{x^2-1}-\frac{1}{1-x}+1=\frac{x^2}{x+1}+\frac{2x}{x^2-1}+\frac{1}{x-1}+1\)
\(=\frac{x^2}{x+1}+\frac{2x}{x^2-1}+\frac{x}{x-1}=\frac{x^2(x-1)}{(x+1)(x-1)}+\frac{2x}{(x-1)(x+1)}+\frac{x(x+1)}{(x-1)(x+1)}\)
\(=\frac{x^3+3x}{(x-1)(x+1)}=\frac{x^3+3x}{x^2-1}\)
c)
\(\frac{1}{x^3-x}-\frac{1}{x(x-1)}+\frac{2}{x^2-1}=\frac{1}{x(x-1)(x+1)}-\frac{x+1}{x(x-1)(x+1)}+\frac{2x}{x(x-1)(x+1)}\)
\(=\frac{x}{x(x-1)(x+1)}=\frac{1}{(x-1)(x+1)}=\frac{1}{x^2-1}\)
\(ĐKXĐ:x\ne3;x\ne-1\)
Nếu x=0 là nghiệm của phương trình
Nếu x khác 0 ta có:
\(\frac{1}{2\left(x-3\right)}+\frac{1}{2\left(x-1\right)}=\frac{2}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{x-1+x-3}{\left(x-1\right)\left(x-3\right)}=\frac{4}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x-4}{\left(x-1\right)\left(x-3\right)}=\frac{4}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow2x-4=4\)
\(\Leftrightarrow x=4\)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne-1;x\ne3\right)\)
<=> \(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
<=> \(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}=0\)
<=> \(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
=> 2x2-6x=0
<=> 2x(x-3)=0
<=> \(\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
ĐCĐK x khác -1 và x khác 3 => x=0
Vậy x=0 là nghiệm của phương trình