CHO tam giác ABC vuông tại A, kẻ AH vuong óc vs BC ( H thuộc BC ) Trên tia đối của HA lấy đ D s cho HD = HA
a) CM tam giác AHB= tam giác DHB
b) CM BD _I_ CD
c) cho góc ABC = 60 độ tính số đo góc ACD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
BH chung
AH=DH(gt)
Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)
a) Xét \(\Delta AHB\)và \(\Delta DHB\)có:
\(AH=DH\left(gt\right)\)
BH là cạnh chung
\(\widehat{AHB}=\widehat{DHB}\left(=90^0\right)\)
\(\Rightarrow\Delta ABH=\Delta DBH\left(c.g.c\right)\)
b) Vì \(\Delta ABH=\Delta DBH\left(cmt\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )
=> BC là tia phân giác \(\widehat{ABD}\)( đpcm )
A)Xét t/giác AHB và t/giác DHB có
AH=AD(gt)
Góc AHB=góc DHB=900
BH là cạnh chung
Suy ra t/giác AHB=t/giác DHB(c-g-c)
B)Ta có Góc ABH=góc DBH( t/giác ABH=t/giác DBH)
Suy ra :BC là tia phân giác của góc ABD
C)Xét t/giác AHM vuông tại H và t/giác FNM vuông tại N
AM=FM(gt)
Góc AHM= góc FMN(2 góc đối đỉnh)
Suy ra t/giác AHM =t/giác FNM( cạnh huyền -góc nhọn)
Suy ra AH=NF (2 cạnh tương ứng)
Mà AH=HD (gt)
Suy ra NF=HD
Chúc bn hc tốt
a: Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
HB chung
HA=HD
Do đó: ΔAHB=ΔDHB
b: Xét ΔACH vuông tại H và ΔDCH vuông tại H có
HC chung
HA=HD
Do đó: ΔACH=ΔDCH
Suy ra: \(\widehat{ACH}=\widehat{DCH}\)
hay CB là tia phân giác của góc ACD
a,xét tam giác ACH và tam giác DCH có:
HA=HD(gt)
góc CHA= góc CHD(vì CH\(\perp\)AD)
HC chung => tam giác ACH=tam giác DCH(c.g.c)
tam giác ADC có CH vừa là trung tuyến đồng thời là đường cao=>tam giác ADC cân tại C
b,xét tam giác AHB và tam giác DHE có:
góc BHA= góc DHE( đối đỉnh)
HA=HD(cmt), HB=HE(gT)=>tam giác AHB= tam giác DHE(c.g.c)
gọi giao điểm DE với AC là K
vì tam giác AHB= tam giác DHE(cmt)=>góc HED= góc HBA
mà góc HED=góc CEK( đối đỉnh)=> góc HBA=góc CEK
lại có tam giác ABC vuông tại A=> góc HBA+ góc ECK=90 độ=> góc CEK+góc ECK=90 độ=>DK\(\perp AC\)
hay DE \(\perp AC\) mà CE\(\perp AD\)(tại H)=>E là trực tâm tam giác ADC
ăn cơm đã ý c tí mik làm sau
a) \(\Delta\)AHB =\(\Delta\)DHB ( c-g-c) vì có AH =DH ; góc AHB =DHB = 90 và BH chng
b) théo a => AB = DB (1)
ta chứng minh dc \(\Delta\) HDC =\(\Delta\)HAC ( c-g-c)
=> AC =DC (2)
(1)(2) và BC chung => \(\Delta\) ABC =\(\Delta\)DBC =>
BDC= BAC =90
=> BD vuông góc với CD