K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

Bài làm:

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Leftrightarrow A=1-\frac{1}{10}\)

\(\Leftrightarrow A=\frac{9}{10}\)

Vậy \(A=\frac{9}{10}\)

24 tháng 4 2020

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{1}-\frac{1}{10}\)

\(=\frac{10}{10}-\frac{1}{10}\)

\(=\frac{9}{10}\)

P/s: E nên lưu ý các dạng bài này nhé! Đây thường là câu cuối trong đề thi cuối kì đấy!

16 tháng 3 2017

a) Vì n.(n+1) = 1/n-1/n+1 suy ra n thuộc N      n khác 0

b) A=1/1*2+1/2*3+1/3*4+...+1/9.10

A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10

A=1-1/10=9/10

Vậy A = 9/10

17 tháng 5 2021

1/2.3 + 1/3.4 + ....+ 1/ 99.100

= 1/2.(2+1) + 1/3.(3+1) + ... + 1/99.(99+1)

= 1/2 - 1/2+1  + 1/3 - 1/3+1  +....+ 1/99 - 1/99+1

= 1/2 - 1/99

= 49/100

17 tháng 5 2021

teo ko bt

13 tháng 10 2017

Gọi tổng trên là  A

\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)

\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(\Rightarrow3A=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5+...-\left(n-1\right).n.\left(n+1\right)+n.\left(n+1\right).\left(n+2\right)\)

\(\Rightarrow3A=n.\left(n+1\right).\left(n+2\right)\Rightarrow A=\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

13 tháng 1 2016

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

16 tháng 3 2016

bằng 9/10 đó bạn

* mình nha, thanks ^.^

16 tháng 3 2016

đặt A= 1/1.2+1/2.3+1/3.4+.......+1/9.10,ta có:

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow A=1-\frac{1}{10}\)

\(\Rightarrow A=\frac{10}{10}-\frac{1}{10}\)

\(\Rightarrow A=\frac{9}{10}\)

23 tháng 4 2023

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{n\left(n+1\right)}\)

\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)

= 1 - \(\dfrac{1}{n+1}\) = \(\dfrac{n}{n+1}\)

23 tháng 9 2017

Trả lời nhanh giúp mình với .

22 tháng 5 2021

`1/(2.3)+1/(3.4)+......+1/(99/100)`
`=1/2-1/3+1/3-1/4+..........+1/99-1/100`
`=1/2-1/100`
`=49/100`

22 tháng 5 2021

có vẻ là như vậy

7 tháng 10

a; A  =1 + 2 +3+ 4+ 5+ ... +n

Xét dãy số 1; 2; 3; 4;5;...;n

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (n - 1) : 1 + 1 = n (số số hạng)

Tổng của dãy số trên là: (n + 1).n x 2 

A = (n + 1).n:2

 

 

 

7 tháng 10

B = 1 + 3 + 5+ 7+ ...+ (2n - 1)

Dãy số trên là dãy số cách đều với khoảng cách là: 

     3 - 1 = 2

Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n

Tổng của dãy số trên là:    (2n - 1 + 1) x n : 2 = n2

Vậy B = n2