Tìm x,y thuộc z
xy + 2x + y = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$xy-2x-3y+1=0$
$(xy-2x)-(3y-6)+1=6$
$x(y-2)-3(y-2)=5$
$(x-3)(y-2)=5$.
Đến đây, do $x-3, y-2$ đều là số nguyên nên ta có bảng sau:
Bài 1:
xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = \(\frac{1}{2}\)
thay vào thấy thỏa mãn
Vậy x = 1\(\frac{1}{2}\) ; y = -1
a)
<=> x+y=0 hoặc 2x-1=0
<=> x=-y hoặc x=1/2.
b)
=> x+y và 2x-1 là ước của 3 =1;3;-1;-3.
Do 2x-1 ko chia hết cho 2
TH1=> 2x-1=-1 và x+y=-3
=> x=0 và y=-3
TH2: 2x-1=1 và x+y=3
=> x=1 và y=2.
c) <=>x(y+1)-2y-2=1
<=> x(y+1)-2(y+1)=1
<=> (x-2)(y+1)=1
=> x-2; y+1 là ước của 1 =1;-1
TH1 x-2=1 và y+1=1
=> x=3 và y=0
TH2 x-2=-1 và y+1=-1
=> x=1 và y=-2.
( x + y ).( 2x - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+y=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x+y=0\\2x=0+1\end{cases}\Rightarrow}\orbr{\begin{cases}x+y=0\\2x=1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}+y=0\\x=\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}y=0+\frac{1}{2}\\x=\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}y=\frac{1}{2}\\x=\frac{1}{2}\end{cases}}}\)
Vậy ...................
\(xy+2x+y=0 \)
\(\Leftrightarrow x.\left(y+2\right)+y=0\)
\(\Leftrightarrow x.\left(y+2\right)+y+2=0+2\)
\(\Leftrightarrow\left(x+1\right).\left(y+2\right)=2\)
Vì \(x\in Z\Rightarrow x+1\in Z\) (1)
\(y\in Z\Rightarrow y+2\in Z\) (2)
Mà (x+1)(y+2)=2 (3)
Từ (1) , (2) và (3)\(\Rightarrow\)x+1, y+2 \(\inƯ\left(2\right)\)
\(\Rightarrow x+1,y+2\in\left\{\pm1;\pm2\right\}\)
Ta có bảng kết quả:
Vậy ......
thiếu đề ; với đề bài này sẽ chỉ tìm được \(x=-\frac{y}{y+2}\)và y\(=-\frac{2x}{x+1}\)