Tìm một số tự nhiên có hai chữ số, biết rằng:
- Tổng hai chữ số là 12
- Nếu đổi chỗ hai chữ số thì được một số mới lón hơn số đó là 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(ab=ba.4,5\)\(\Rightarrow a.10+b=\left(b.10+a\right)4,5\)\(\Rightarrow10a+b=45b+4,5a\)
\(\Rightarrow10a-4,5a=45b-b\)\(\Rightarrow5,5a=44b\Rightarrow a=8b\)
Ta thấy: 0<a<10 mà a=8b suy ra a=8 suy ra b=1
Vậy số cần tìm là 81
Ta có các số tự nhiên có 2 chữ số mà chữ số hàng chục gấp ba lần chữ số hàng đơn vị: 93; 62; 31
Ta lần lượt thử các số:
Viết ngược của 31 là 13, kém số ban đầu: 31 - 13 = 18 (sai)
Viết ngược của 62 là 26, kém số ban đầu: 62 - 26 = 36 (sai)
Viết ngược của 93 là 39, kém số ban đầu: 93 - 39 = 54 (đúng)
Vậy số ban đầu là 93.
Đáp số: 93
Gọi số cần tìm là ab (a,b ∈ N,1 ≤ a ≤ 9,0 ≤ b ≤ 9)
Theo đầu bài, ta có ab - ba = 45 <=> 10a + b - 10b - a = 45
<=> 9a - 9b = 45 <=> a - b = 5
Lại có a6b - ab = 240 <=> 100a + 60 + b - 10a - b = 240
<=> 90a = 180 <=> a = 2
<=> b = 2 - 5 = -3
Mà a,b ∈ N => Vô lí
Vậy không tồn tại số ab
Số cần tìm chỉ có thể là số có hai chữ số, vì nếu là số có 3 chữ số khi ta viết thêm chữ số 3 vào bên trái số đó số đó thành số có 4 chữ số lớn hơn 414. Số cần tìm không thể là số có 1 chữ số vì 1 chữ số lớn nhất là 9 viết thêm số 3 vào bên trái ta có 39mà39<414 (loại).
Gọi số cần tìm là ab,thì số mớ là 3ab.
Theo bài ra ta có; 3ab+ab=414.
Hay ab×2=114
=>ab=114:2=57
Số cần tìm chỉ có thể là số có hai chữ số, vì nếu là số có 3 chữ số khi ta viết thêm chữ số 3 vào bên trái số đó số đó thành số có 4 chữ số lớn hơn 414. Số cần tìm không thể là số có 1 chữ số vì 1 chữ số lớn nhất là 9 viết thêm số 3 vào bên trái ta có 39mà39<414 (loại). Gọi số cần tìm là ab,thì số mớ là 3ab. Theo bài ra ta có; 3ab+ab=414. Hay ab×2=114 =>ab=114:2=57
ab là số cần tìm
b-a=4(1)
ab +ba =132 (2) gọi b+a =c2 ,(2)<=> b+a= c*10+2 <=> (c*10+2)*10+c*10+2=132<=> 110c+22=132 <=> c=1
=> b+a=12=>a=12-b
thế a=12-b vào (1) : b-12+b=4=> b=8 => a=4
Số cần tìm là: 48