K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=25^2-20^2=225\)

hay \(AB=\sqrt{225}=15cm\)

Xét ΔABC có

BM là đường phân giác ứng với cạnh AC(gt)

nên \(\frac{CM}{BC}=\frac{AM}{AB}\)

hay \(\frac{CM}{25}=\frac{AM}{15}\)

Ta lại có: CM+AM=AC=20cm(M nằm giữa A và C)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{CM}{25}=\frac{AM}{15}=\frac{CM+AM}{25+15}=\frac{AC}{40}=\frac{20cm}{40}=\frac{1}{2}\)

Do đó: \(CM=\frac{25\cdot1}{2}=12,5cm\)

Vậy: AB=15cm; CM=12,5cm

a: AB=15cm

Xét ΔABC có BM là phân giác

nên AM/AB=MC/BC

=>AM/15=MC/25

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{15}=\dfrac{MC}{25}=\dfrac{AM+MC}{15+25}=\dfrac{20}{40}=\dfrac{1}{2}\)

Do đó: CM=12,5(cm)

b: Xét ΔNAC vuông tại A và ΔNDB vuông tại D có 

\(\widehat{N}\) chung

Do đó: ΔNAC\(\sim\)ΔNDB

Suy ra: NA/ND=NC/NB

hay \(NA\cdot NB=ND\cdot NC\)

b) Xét ΔMEB và ΔMCF có 

\(\widehat{MEB}=\widehat{MCF}\left(=\widehat{AEF}\right)\)

\(\widehat{M}\) chung

Do đó: ΔMEB\(\sim\)ΔMCF(g-g)

Suy ra: \(\dfrac{ME}{MC}=\dfrac{MB}{MF}\)

hay \(ME\cdot MF=MB\cdot MC\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)(hai góc tương ứng)

a: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)

b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có

BM chung

góc ABM=góc NBM

=>ΔBAM=ΔBNM

=>MA=MN

c: Xét ΔBDC có

BE là đừog cao, là phân giác

nên ΔBDC cân tại B

=>BD=BC

BA+AD=BD

BN+NC=BC

mà BD=BC; BA=BN

nên AD=NC

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

a: Xét ΔMBN và ΔMCA có

góc MBN=góc MCA

góc BMN=góc CMA

=>ΔMBN đồng dạng với ΔMCA

b: AB/AC=MB/MC=MN/MA