Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+\frac{4}{9x}\right)+\left(y+\frac{4}{9y}\right)+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{x.\frac{4}{9x}}+2\sqrt{y.\frac{4}{9y}}+\frac{20}{9\left(x+y\right)}\)
\(\ge\frac{4}{3}+\frac{4}{3}+\frac{20}{12}=\frac{13}{3}\)
Dấu "=" xảy ra khi \(x=y=\frac{2}{3}\)
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
Ta có
\(A=4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2.\frac{1}{3}=3\)
1: A=2
=>\(\sqrt{x}+1=2\left(\sqrt{x}-2\right)\)
=>\(2\sqrt{x}-4=\sqrt{x}+1\)
=>\(\sqrt{x}=5\)
=>x=25
2: A<1
=>A-1<0
=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
=>\(\dfrac{3}{\sqrt{x}-2}< 0\)
=>\(\sqrt{x}-2< 0\)
=>0<=x<4
3: A<1/3
=>A-1/3<0
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{1}{3}< 0\)
=>\(\dfrac{3\sqrt{x}+3-\sqrt{x}+2}{3\left(\sqrt{x}-2\right)}< 0\)
=>\(\dfrac{2\sqrt{x}+5}{3\left(\sqrt{x}-2\right)}< 0\)
=>\(\sqrt{x}-2< 0\)
=>0<=x<4
4:
A=căn x
=>\(\sqrt{x}+1=x-2\sqrt{x}\)
=>\(x-3\sqrt{x}-1=0\)
=>\(\left[{}\begin{matrix}\sqrt{x}=\dfrac{3+\sqrt{13}}{2}\left(nhận\right)\\\sqrt{x}=\dfrac{3-\sqrt{13}}{2}\left(loại\right)\end{matrix}\right.\)
=>\(x=\dfrac{11+3\sqrt{13}}{2}\)