Cho tam giácABC có M(1;-2) là trung điểm AB, trục Ox là phân giác trong góc A, đỉnh B,C thuộc đường thẳng đi qua N (-3;0) và P(0;2). tìm tọa độ 3 đỉnh của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(h_b+h_c=2h_a\)
\(\Leftrightarrow\dfrac{2.S_{ABC}}{b}+\dfrac{2.S_{ABC}}{c}=\dfrac{4.S_{ABC}}{a}\)
\(\Leftrightarrow\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{2}{a}\)
Áp dụng định lí sin:
\(\dfrac{1}{sinA}+\dfrac{1}{sinB}=\dfrac{2R}{b}+\dfrac{2R}{c}=2R\left(\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{2.2R}{a}=\dfrac{2}{sinA}\)
Không biết đề có sai không hay bài tui làm sai nữa.
Xét ΔOAB có
M∈OA(gt)
N∈OB(gt)
\(\dfrac{OM}{OA}=\dfrac{ON}{OB}\left(=\dfrac{1}{3}\right)\)
Do đó: MN//AB(Định lí Ta lét đảo)
Xét ΔOAB có
M∈OA(gt)
N∈OB(gt)
MN//AB(cmt)
Do đó: \(\dfrac{MN}{AB}=\dfrac{OM}{OA}\)(Hệ quả của Định lí Ta lét)
⇔\(\dfrac{MN}{AB}=\dfrac{1}{3}\)(1)
Xét ΔAOC có
M∈OA(gt)
P∈OC(gt)
\(\dfrac{OM}{OA}=\dfrac{OP}{OC}\left(=\dfrac{1}{3}\right)\)
Do đó: MP//AC(Định lí Ta lét đảo)
Xét ΔOAC có
M∈OA(gt)
P∈OC(gt)
MP//AC(cmt)
Do đó: \(\dfrac{MP}{AC}=\dfrac{OM}{OA}\)(Hệ quả của Định lí ta lét)
hay \(\dfrac{MP}{AC}=\dfrac{1}{3}\)(2)
Xét ΔOBC có
N∈BO(gt)
P∈CO(gt)
\(\dfrac{ON}{OB}=\dfrac{OP}{OC}\left(=\dfrac{1}{3}\right)\)
Do đó: NP//BC(Định lí Ta lét đảo)
Xét ΔOBC có
N∈BO(gt)
P∈CO(gt)
NP//BC(cmt)
Do đó: \(\dfrac{NP}{BC}=\dfrac{ON}{OB}\)(Hệ quả của Định lí Ta lét)
⇔\(\dfrac{NP}{BC}=\dfrac{1}{3}\)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{MN}{AC}=\dfrac{MP}{AC}=\dfrac{NP}{BC}\)
Xét ΔMNP và ΔABC có
\(\dfrac{MN}{AC}=\dfrac{MP}{AC}=\dfrac{NP}{BC}\)(cmt)
Do đó: ΔMNP∼ΔABC(C-c-c)
minh chac cau da biet dap an roi thu 4 nho roi cau cu nhac hoai k minh cai