tìm x.y thuộc n,biết rằng 2x +242=3y
b)tìm x,y đẻ số 30xy chia hết cho cả 2 và 3 ,và chia cho 5 dư 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 30xy chia hết cho 2 <=>y thuộc {2,4,6,8,0}
mà 30xy chia cho 5 dư 2=> y=2
ta có 30x2chia hết cho 3
=> 3+0+x+2 chia hết cho 3
=>5+x chia hết cho 3
=> x=1
Vậy xy = 1
vì 30xy chia hết cho 2 <=>y thuộc(2,4,6,8,0)
mà 30xy chia cho 5 dư 2 => y=2
ta có 30x2 chia hết cho 3
=> 3+0+x+2 chia hết cho 3
=> 5+x chia hết cho 3
=> x=1
vậy xy =12
Để 30xy chia hết cho 2 thì ( y = 2,4,6,8 )
Mà y chia cho 5 dư 2 nên y = 2
Lại có 30x2 chia hết cho 3
Nên 3 + 0 + x + 2 chia hết cho 3
=> 5 + x chia hết cho 3
=> x = 1,4,7
Vậy xy = 12; 42;72
vì 30xy chia hết cho 2 <=>y thuộc {2,4,6,8,0}
mà 30xy chia cho 5 dư 2=> y=2
ta có 30x2chia hết cho 3
=> 3+0+x+2 chia hết cho 3
=>5+x chia hết cho 3
=> x=1
vậy xy = 12
Vì số 30xy chia 5 dư 2 nên y=2 hoặc 7
Mà số 30xy chia hết cho 2 nên y=2.
Để số 30x2 chia hết cho 9 thì (3+0+x+2) chia hết cho 9 hay(5+x) chia hết cho 9 \(\Rightarrow\)x=4
Vậy x=4;y=2.
vì 30xy chia hết cho 2 <=>y thuộc {2,4,6,8,0}
mà 30xy chia cho 5 dư 2=> y=2
ta có 30x2chia hết cho 3
=> 3+0+x+2 chia hết cho 3
=>5+x chia hết cho 3
=> x=1
vậy xy = 12
Tick nha
Câu 8:
Từ 1 - 100 có:
\(\left(100-1\right):1+1=100\) (số)
Trong khoảng từ 1 - 100 ta có:
a) Số lượng số chia hết cho 2 là:
\(\left(100-2\right):2+1=50\) (số)
b) Số lượng số không chia hết cho 2 là:
\(100-50=50\) (số)
c) Số lượng số chia hết cho 5 là:
\(\left(100-5\right):5+1=20\) (số)
d) Số lượng số không chia hết cho 5 là:
\(100-20=80\) (số)
e) Số lượng số chia hết cho 3 là:
\(\left(99-3\right):3+1=33\) (số)
g) Số lượng số không chia hết cho 3 là:
\(100-33=67\) (số)
h) Số lượng số chia hết cho 9 là:
\(\left(99-9\right):9+1=11\) (số)
i) Số lượng số không chia hết cho 9 là:
\(100-11=89\) (số)
Câu 1: Ta có số: \(A=\overline{x036y}\)
A chia 2 dư 1 nên: \(y\in\left\{1;3;5;7;9\right\}\) (1)
A chia 5 dư 1 nên: \(y\in\left\{1;6\right\}\) (2)
Từ (1) và (2) ⇒ y = 1
\(\Rightarrow A=\overline{x0361}\)
Mà A chia 9 dư 1 \(\Rightarrow x+0+3+6+1=18+1\)
\(\Rightarrow x+10=19\)
\(\Rightarrow x=9\)
Vậy: \(A=90361\)
a; Tổng của ba số tự nhiên liên tiếp có dạng:
n; n + 1; n + 2
Tổng của ba số tự nhiên liên tiếp có là:
n + n + 1 + n +2 = 3n + 3 = 3.(n+ 1) ⋮ 3(đpcm)
a) -3n + 2 \(⋮\)2n + 1
<=> 2(-3n + 2) \(⋮\)2n + 1
<=> -6n + 4 \(⋮\)2n + 1
<=> -3(2n + 1) + 7 \(⋮\)2n + 1
<=> 7 \(⋮\)2n + 1
<=> 2n + 1 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
2n + 1 | -1 | 1 | -7 | 7 |
n | -1 | 0 | -4 | 3 |
Vậy n = {-1; 0; -4; 3}
b) n2 - 5n +7 \(⋮\)n - 5
<=> n(n - 5) + 7 \(⋮\)n - 5
<=> 7 \(⋮\)n - 5
<=> n - 5 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
n - 5 | -1 | 1 | -7 | 7 |
n | 4 | 6 | -2 | 12 |
Vậy n = {4; 6; -2; 12}
c) (3 - x)(xy + 5) = -1
<=> (3 - x) và (xy + 5) \(\in\)Ư(-1)
Ta có: Ư(-1) \(\in\){-1; 1}
Lập bảng:
3 - x | -1 | 1 |
x | -4 | 2 |
xy + 5 | 1 | -1 |
y | 1 | -3 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-4; 1) và (2; -3)
d) xy - 3x = 5
<=> x(y - 3) = 5
<=> x và y - 3 \(\in\)Ư(5)
Ta có: Ư(5) \(\in\){\(\pm\)1; \(\pm\)5}
Lập bảng:
x | -1 | 1 | -5 | 5 |
y-3 | -5 | 5 | -1 | 1 |
y | -2 | 8 | 2 | 4 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-1; -2); (1; 8); (-5; 2) và (5; 4)
e) xy - 2y + x = -5
<=> y(x - 2) + (x - 2) = -7
<=> (x - 2)(y + 1) = -7
<=> (x - 2) và (y + 1) \(\in\)Ư(-7)
Ta có: Ư(-7) \(\in\){\(\pm\)1; \(\pm\)7}
Lập bảng:
x - 2 | -1 | 1 | -7 | 7 |
x | 1 | 3 | -5 | 9 |
y + 1 | 7 | -7 | 1 | -1 |
y | 6 | -8 | 0 | -2 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (1; 6): (3; -8); (-5; 0) và (9; -2)
a. 2x + 242 = 3y
=> 2x + chẵn = lẻ, mà lẻ + chẵn = lẻ
=> 2x = lẻ
=> 2x = 20 = 1
=> 1 + 242 = 3y
=> 243 = 3y
=> 35 = 3y
=> y = 5
Vậy x=0; y=5.
b. 30xy chia 5 dư 2
=> y = 2 hoặc y = 7
Mà 30xy chia hết cho 2
=> y = 2
30x2 chia hết cho 3
=> 3+0+x+2 chia hết cho 3
=> 5+x chia hết cho 3
=> x \(\in\){1; 4; 7}
Vậy x \(\in\){1; 4; 7} và y=2.