Cho hàm số f(x) = -mx^3/3 + mx^2/2 -(3-m)x+2
Tìm m để:
a) f'(x)<0 với mọi x
b) f'(x)=0 có 2 nghiệm phân biệt cùng dấu
c) Trong trường hợp f'(x)=0 có hai nghiệm, tìm hệ thức giữa hai nghiệm không phụ thuộc vào m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`f'(x) = x^2 - 4x+m`
`f'(x) >=0 <=>x^2-4x+m>=0`
`<=> \Delta' >=0`
`<=> 2^2-1.m>=0`
`<=> m<=4`
Vậy....
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{x+7}-3}{x-2}\left(x< >2\right)\\mx+2023\left(x=2\right)\end{matrix}\right.\)
Để hàm số liên tục tại x=2 thì \(\lim\limits_{x\rightarrow2}f\left(x\right)=F\left(2\right)\)
=>\(\lim\limits_{x\rightarrow2}\dfrac{x+7-9}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=2m+2023\)
=>\(2m+2023=\dfrac{1}{\sqrt{2+7}+3}=\dfrac{1}{6}\)
=>m=-12137/12
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
1: \(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2+2x-\left(m+1\right)=x^2+2x-m-1\)
\(\Delta=2^2-4\left(-m-1\right)=4m+8\)
Để f'(x)>=0 với mọi x thì 4m+8<=0 và 1>0
=>m<=-2
=>\(m\in\left\{-10;-9;...;-2\right\}\)
=>Có 9 số
\(f'\left(x\right)=2m-3mx^2\Rightarrow f'\left(1\right)=2m-3m=-m\)
\(\Rightarrow-m\le1\Rightarrow m\ge-1\)
\(f'\left(x\right)=-mx^2+mx+m-3\)
a/ \(f'\left(x\right)< 0;\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}-m< 0\\\Delta=m^2+4m\left(m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\5m^2-12m< 0\end{matrix}\right.\) \(\Rightarrow0< m< \frac{12}{5}\)
b/ \(-mx^2+mx+m-3=0\) có 2 nghiệm pb cùng dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=5m^2-12m>0\\ac=-m\left(m-3\right)>0\end{matrix}\right.\)
\(\Rightarrow\frac{12}{5}< m< 3\)
c/ \(-mx^2+mx+m-3=0\)
\(\Rightarrow x_1+x_2=1\)
Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m