2 số dương a,b có a+b = 1 tìm giá trị nhỏ nhata của biểu thứ A= 1/1+3ab+a2 + 1/1+3ab+b2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=a^3+b^3+3ab\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)
=1
\(M=\left(a^2+b^2+2-a^2-b^2+2\right)\left[\left(a^2+b^2+2\right)^2+\left(a^2+b^2+2\right)\left(a^2+b^2-2\right)+\left(a^2+b^2-2\right)^2\right]-12\left(a^2+b^2\right)^2\\ M=4\left(a^4+b^4+4+4a^2+4b^2+2a^2b^2+\left(a^2+b^2\right)^2-4+a^4+b^4+4-4a^2-4b^2+2a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2-3a^4-6a^2b^2-3b^4\right)\\ M=4\cdot4=164\)
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có :
\(A=\frac{1}{1+3ab+a^2}+\frac{1}{1+3ab+b^2}\ge\frac{4}{a^2+b^2+6ab+2}\)
Ta có : \(a^2+b^2+6ab+2=\left(a^2+2ab+b^2\right)+4ab+2=\left(a+b\right)^2+4ab+2=4ab+3\)
Áp dụng bđt \(xy\le\frac{\left(x+y\right)^2}{4}\) ta có : \(4ab+3\le4.\frac{\left(a+b\right)^2}{4}+3=\left(a+b\right)^2+3=1+3=4\)
\(\Rightarrow A\ge\frac{4}{a^2+b^2+6ab+2}\ge\frac{4}{4}=1\) có GTNN là 1
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)
=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)
=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)
=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)
Thay a + b = 1 vào biểu thức trên ,có :
1.(12−3ab)+3ab(12−2ab)+6a2b2.11.(12−3ab)+3ab(12−2ab)+6a2b2.1
=1−3ab+3ab−6a2b2+6a2b2=1=1−3ab+3ab−6a2b2+6a2b2
=1
Vậy biểu thức M có giá trị bằng 1 khi a + b = 1
M=(a+b)(a2-ab+b2)+3ab(1-2ab)+6a2b2
M=a2-ab+b2+3ab
M=(a+b)2=1
Ta có: a + b = 1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)
= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2
= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2
= 1
nhwos tick nha :D
Ta có: a + b = 1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)
= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2
= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2
= 1
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)
Theo đề bài:
\(a+b+3ab=1\)
\(\Leftrightarrow4\left(a+b\right)+12ab=4\)
\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)
\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)
\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)
\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)
\(\Leftrightarrow a+b\ge\frac{2}{3}\)
`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)
Áp dụng các kết quả trên, ta có:
\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)
\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)
Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)
\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)
Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)
\(A=\frac{1}{1+3ab+a^2}+\frac{1}{1+3ab+b^2}\ge\frac{4}{2+a^2+b^2+6ab}=\frac{4}{2+\left(a+b\right)^2+4ab}\ge\frac{4}{2+\left(a+b\right)^2+\left(a+b\right)^2}=1\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)