K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác DKMI có 

\(\widehat{DKM}\) và \(\widehat{DIM}\) là hai góc đối

\(\widehat{DKM}+\widehat{DIM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: DKMI là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

 

a: Kẻ tiếp tuyến Ax tại A của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>OA vuông góc FE tại I

góc ABJ=1/2*180=90 độ

góc FBJ+góc FIJ=180 độ

=>FBJI nội tiếp

b: Xét ΔMNC và ΔMBA có

góc MNC=góc MBA

góc M chung

=>ΔMNC đồng dạng vơi ΔMBA

=>MN/MB=MC/MA

=>MN*MA=MB*MC

Xét ΔMBF và ΔMEC có

góc MBF=góc MEC

góc M chung

=>ΔMBF đồng dạg với ΔMEC

=>MB/ME=MF/MC

=>MB*MC=ME*MF=MN*MA

=>MF/MA=MN/ME

=>ΔMFN đồng dạng với ΔMAE
=>góc MFN=góc MAE

=>góc NAE+góc NFE=180 độ

=>ANFE nội tiếp

a: Kẻ tiếp tuyến Ax tại A của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>OA vuông góc FE tại I

góc ABJ=1/2*180=90 độ

góc FBJ+góc FIJ=180 độ

=>FBJI nội tiếp

b: Xét ΔMNC và ΔMBA có

góc MNC=góc MBA

góc M chung

=>ΔMNC đồng dạng vơi ΔMBA

=>MN/MB=MC/MA

=>MN*MA=MB*MC

Xét ΔMBF và ΔMEC có

góc MBF=góc MEC

góc M chung

=>ΔMBF đồng dạg với ΔMEC

=>MB/ME=MF/MC

=>MB*MC=ME*MF=MN*MA

=>MF/MA=MN/ME

=>ΔMFN đồng dạng với ΔMAE
=>góc MFN=góc MAE

=>góc NAE+góc NFE=180 độ

=>ANFE nội tiếp

a: góc BIM=góc BHM=90 độ

=>BMHI nội tiếp

b: góc CBM=góc MAC=góc MAK

=>góc MAK=góc MIK

25 tháng 5 2022

tham khảo:v

undefined

25 tháng 5 2022

tham khảo

Cho tam giác ABC nhọn (AB < AC) nội tiếp (O;R), hai đường cao AD và CF cắt nhau tại H, BH cắt AC tại E. a) Chứng minh: AF.BC = AC.EF

c: AHIK nội tiếp

=>góc AIK=góc AHK

BHKC nội tiếp nên góc ICK=góc AHK

=>góc ICK=góc AIK

=>góc AIC=90 độ

8 tháng 5 2022

undefined

CHÚC EM HỌC TỐT NHÉhehe

25 tháng 3 2021

a. xét tứ giác EKHF có

\(\widehat{HKE}=90độ\) (FK là đường cao)

\(\widehat{KHF}=90độ\) (EH là đường cao)

⇒ \(\widehat{HKE}+\widehat{KHF}=90+90=180độ\)

⇒tứ giác EKHF là tứ giác nội tiếp

a) Xét tứ giác EKHF có 

\(\widehat{EKF}=\widehat{EHF}\left(=90^0\right)\)

\(\widehat{EKF}\) và \(\widehat{EHF}\) là hai góc cùng nhìn cạnh EF

Do đó: EKHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: góc OBE+góc OCE=180 độ

=>OBEC nội tiếp

b: Xét ΔEBD và ΔEAB có

góc EBD=góc EAB

góc BED chung

=>ΔEBD đồng dạng với ΔEAB

=>EB/EA=ED/EB

=>EB^2=EA*ED