Cho tam giác nhọn CDE nội tiếp (O). CP vuông ED tại M, DQ vuông EC tại N. CP giao DQ tại H. Chứng minh
a, CMND nội tiếp, HNEM nội tiếp
b, QE=PE
c, Tam giác HDP cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác DKMI có
\(\widehat{DKM}\) và \(\widehat{DIM}\) là hai góc đối
\(\widehat{DKM}+\widehat{DIM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: DKMI là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: Kẻ tiếp tuyến Ax tại A của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>OA vuông góc FE tại I
góc ABJ=1/2*180=90 độ
góc FBJ+góc FIJ=180 độ
=>FBJI nội tiếp
b: Xét ΔMNC và ΔMBA có
góc MNC=góc MBA
góc M chung
=>ΔMNC đồng dạng vơi ΔMBA
=>MN/MB=MC/MA
=>MN*MA=MB*MC
Xét ΔMBF và ΔMEC có
góc MBF=góc MEC
góc M chung
=>ΔMBF đồng dạg với ΔMEC
=>MB/ME=MF/MC
=>MB*MC=ME*MF=MN*MA
=>MF/MA=MN/ME
=>ΔMFN đồng dạng với ΔMAE
=>góc MFN=góc MAE
=>góc NAE+góc NFE=180 độ
=>ANFE nội tiếp
a: Kẻ tiếp tuyến Ax tại A của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>OA vuông góc FE tại I
góc ABJ=1/2*180=90 độ
góc FBJ+góc FIJ=180 độ
=>FBJI nội tiếp
b: Xét ΔMNC và ΔMBA có
góc MNC=góc MBA
góc M chung
=>ΔMNC đồng dạng vơi ΔMBA
=>MN/MB=MC/MA
=>MN*MA=MB*MC
Xét ΔMBF và ΔMEC có
góc MBF=góc MEC
góc M chung
=>ΔMBF đồng dạg với ΔMEC
=>MB/ME=MF/MC
=>MB*MC=ME*MF=MN*MA
=>MF/MA=MN/ME
=>ΔMFN đồng dạng với ΔMAE
=>góc MFN=góc MAE
=>góc NAE+góc NFE=180 độ
=>ANFE nội tiếp
a: góc BIM=góc BHM=90 độ
=>BMHI nội tiếp
b: góc CBM=góc MAC=góc MAK
=>góc MAK=góc MIK
c: AHIK nội tiếp
=>góc AIK=góc AHK
BHKC nội tiếp nên góc ICK=góc AHK
=>góc ICK=góc AIK
=>góc AIC=90 độ
a. xét tứ giác EKHF có
\(\widehat{HKE}=90độ\) (FK là đường cao)
\(\widehat{KHF}=90độ\) (EH là đường cao)
⇒ \(\widehat{HKE}+\widehat{KHF}=90+90=180độ\)
⇒tứ giác EKHF là tứ giác nội tiếp
a) Xét tứ giác EKHF có
\(\widehat{EKF}=\widehat{EHF}\left(=90^0\right)\)
\(\widehat{EKF}\) và \(\widehat{EHF}\) là hai góc cùng nhìn cạnh EF
Do đó: EKHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc OBE+góc OCE=180 độ
=>OBEC nội tiếp
b: Xét ΔEBD và ΔEAB có
góc EBD=góc EAB
góc BED chung
=>ΔEBD đồng dạng với ΔEAB
=>EB/EA=ED/EB
=>EB^2=EA*ED