Chứng minh BĐT \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}=\frac{8}{2x^2+2y^2}\)
Mặt khác:
\(2x^2+2y^2\ge x^2+y^2+2xy=\left(x+y\right)^2\)
=>\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{8}{\left(x+y\right)^2}\)
Ai thấy mình làm đúng thì tích nha.Ai tích mình mình tích lại
Khánh làm sai rồi
\(2x^2+2y^2\ge x^2+2xy+y^2\Rightarrow\frac{8}{2x^2+2y^2}\le\frac{8}{\left(x+y\right)^2}\)
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)
\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)
a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
BĐT tương đương
\(\left(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\right)\left(a+b+c\right)\ge\left(x+y+z\right)^2\)
sau đó nhân phá ra và đưa về dạng tổng các bình phương
Áp dụng BĐT Cauchy-Schwarz,ta có:\(\left(\frac{x^2}{a}+\frac{y^2}{b}\right)\left(a+b\right)\ge\left(x+y\right)^2\). Chia hai vế cho a, b.Ta được:
\(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}^{\left(đpcm\right)}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)
@Ace Legona: sir tra hộ e câu này đúng hay sai đề vs ,nhẩm mãi không ra điểm rơi
với mọi x,y ta luôn có:
\(x^2+y^2\ge2xy\left(1\right)\)
cộng cả 2 vế bđt cho \(x^2+y^2\)
\(\left(1\right)\Leftrightarrow x^2+y^2+x^2+y^2\ge x^2+y^2+2xy\)
hay \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow\)đpcm
2(x2 + y2) \(\ge\) (x + y)2
\(\Leftrightarrow\) 2(x2 + y2) - (x + y)2 \(\ge\) 0 (Trừ cả hai vế với (x + y)2)
\(\Leftrightarrow\) 2x2 + 2y2 - x2 - 2xy - y2 \(\ge\) 0
\(\Leftrightarrow\) x2 - 2xy + y2 \(\ge\) 0
\(\Leftrightarrow\) (x - y)2 \(\ge\) 0
Vì (x - y)2 \(\ge\) 0 nên 2(x2 + y2) \(\ge\) (x + y)2
Chúc bn học tốt!!