K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2020

\(a, 10^{n+1} -6.10 ^n\)

= \(10^n (10-6)=4.10^n\)

\(B/ 2^{n+3} + 2^{n+2} - 2^{n+1} +2^n\)

= \(2^n (2^3+2^2-2+1)\)

= \(2^n (8+4-2+1)\)

\(= 11.2^n\)

\(C/ 90.10^k - 10^{k +2} + 10^{k +1} \)

\(= 10^k(90-2+1)\)

= \(89.10^k\)

\(D/ 2,5 . 5^{n-3} . 10+5^n -6 .5^{n-1}\)

\(= 5.5.5^{n-3} +5^n-6.5^{n-1}\)

= \(5^2 .5^{n-3}+5^n-6.5^{n-1} \)

= \(5^{n-3+2}+5^n -6.5^{n-1}\)

\(= 5^{n-1}(1+5-6)\)

= \(5^{n-1}.0\)

= 0

24 tháng 5 2020

cảm ơn ạ

29 tháng 8 2021

Giúp mình với mn

 

29 tháng 8 2021

\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)

Suy ra ĐPCM

 

Cmtt với c,d

 

AH
Akai Haruma
Giáo viên
2 tháng 1

1/

$10n+4\vdots 2n+7$

$\Rightarrow 5(2n+7)-31\vdots 2n+7$

$\Rightarrow 31\vdots 2n+7$

$\Rightarrow 2n+7\in Ư(31)$

$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$

$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$

AH
Akai Haruma
Giáo viên
2 tháng 1

2/

$5n-4\vdots 3n+1$

$\Rightarrow 3(5n-4)\vdots 3n+1$

$\Rightarroq 15n-12\vdots 3n+1$

$\Rightarrow 5(3n+1)-17\vdots 3n+1$

$\Rightarrow 17\vdots 3n+1$

$\Rightarrow 3n+1\in Ư(17)$

$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$

$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$

Do $n$ nguyên nên $n\in\left\{0; -6\right\}$

 

10 tháng 2 2021

a,\(lim\dfrac{n^2-2n}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)

b,\(lim\dfrac{n^2-2}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n^2}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)

c,\(lim\dfrac{1-2n}{5n+3n^2}=lim\dfrac{1-2n}{n\left(5+3n\right)}=lim\dfrac{\dfrac{1}{n}-2}{1\left(\dfrac{5}{n}+3\right)}=-\dfrac{2}{3}\)

d,\(lim\dfrac{1-2n^2}{5n+5}=lim\dfrac{\left(1-n\sqrt{2}\right)\left(1+n\sqrt{2}\right)}{5n+5}=lim\dfrac{\left(\dfrac{1}{n}-\sqrt{2}\right)\left(\dfrac{1}{n}+\sqrt{2}\right)}{5+\dfrac{5}{n}}=\dfrac{-2}{5}\)

 

28 tháng 2 2021

fhehuq3

a) \(\frac{n}{2n+1}\)

Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow\left(2n+1\right)-2n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n;2n+1\right)=1\)

\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản

b) \(\frac{2n+3}{4n+8}\)

Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)

\(\Rightarrow d\ne2\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)

\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản

10 tháng 2 2021

a,\(lim\dfrac{1-2n^2}{5n+5}=lim\dfrac{\left(1-n\sqrt{2}\right)\left(1+n\sqrt{2}\right)}{5n+5}=lim\dfrac{\left(\dfrac{1}{n}-\sqrt{2}\right)\left(\dfrac{1}{n}+\sqrt{2}\right)}{5+\dfrac{5}{n}}=\dfrac{-2}{5}\)

b,\(lim\dfrac{1-2n}{5n+5n^2}=lim\dfrac{\dfrac{1}{n^2}-\dfrac{2}{n}}{\dfrac{5}{n}+5}=\dfrac{0}{5}=0\)

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}