K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2020

\(A=\left|x+2014\right|+\left|x-1\right|=\left|x+2014\right|+\left|1-x\right|\)

\(\ge\left|x+2014-x+1\right|=2015\)

Dấu "=" xảy ra <=> \(\left(x+2014\right)\left(1-x\right)\ge0\)

TH1: x + 2014 \(\ge\)0 và  1- x \(\ge\)

<=> x \(\ge\)-2014 và x \(\le\)1

<=>   \(-2014\le x\le1\)

TH2: x + 2014 \(\le\)0 và 1 - x \(\le\)

<=> x \(\le\)-2014 và x\(\ge\)

==> loại

Vậy GTNN của A = 2015 tại \(-2014\le x\le1\)

31 tháng 3 2016

|x+1|+|x+2|+......+|x+2014|=2015x

Vì |x+1| \(\ge\) 0;|x+2| \(\ge\) 0;.....;|x+2014| \(\ge\) 0 (với mọi x)

=>|x+1|+|x+2|+......+|x+2014| \(\ge\) 0 (với mọi x)

Mà |x+1|+|x+2|+.....+|x+2014|=2015x

=>2015x \(\ge\) 0=>x \(\ge\) 0=>x+1>0;x+2>0;....;x+2014>0

Do đó |x+1|=x+1;|x+2|=x+2;.....;|x+2014|=x+2014

Ta có:(x+1)+(x+2)+.....+(x+2014)=2015x

=>(x+x+....+x)+(1+2+....+2014)=2015x

=>2014x + \(\frac{2014.\left(2014+1\right)}{2}\) =2015x

=>x=2029105

23 tháng 4 2017

GTNN bằng 0 với mọi x thuộc Z

25 tháng 3 2020

A = lx - 2014l + lx - 2015l + lx - 2016l + lx -2017l

 = |x-2014| + |2017 - x| + |x-2015| + |2016-x| >= |x-2014+2017-x| + |x-2015+2016-x|

= 4.

Dấu "=" xảy ra <=> (x-2014)(2017-x) >=0 và (x-2015)(2016-x) >= 0

<=> \(\hept{\begin{cases}\orbr{\begin{cases}\hept{\begin{cases}x\ge2014\\x\le2017\end{cases}}\\\hept{\begin{cases}x\le2014\\x\ge2017\end{cases}\left(kxảyra\right)}\end{cases}}\\\orbr{\begin{cases}\hept{\begin{cases}x\ge2015\\x\le2016\end{cases}}\\\hept{\begin{cases}x\le2015\\x\ge2016\end{cases}\left(kxảyra\right)}\end{cases}}\end{cases}}\)

=> \(2015\le x\le2016\)

Vậy Min A = 4 khi \(2015\le x\le2016\).

6 tháng 11 2019

\(A=\left|2x-2014\right|+\left|x-2015\right|\)

\(A=\left|2x-2014\right|+\left|2015-x\right|\ge\left|2x-2014+2015-x\right|=\left|x+1\right|=x+1\)

\(\Rightarrow A\ge x+1\)

Dấu '' = '' xảy ra khi và chỉ khi

\(\left(2x-2014\right)\left(2015-x\right)=0\)

\(\Leftrightarrow1007\le x\le2015\)

Vậy ..............

P/s : sai thì bỏ qua nha!

6 tháng 11 2019

ơ sao bài này ko ra MIN là số nhỉ

2 tháng 12 2015

áp dụng tính chất : lx| = |-x|

|x|+|y|\(\ge\)|x+y|

ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4

vậy giá trị nhỏ nhất là 4

dấu = xảy ra khi tất cả cùng dấu

cậu nên mua quyển sách mình nói nêu là dân chuyên toán

2 tháng 12 2015

Thanh Nguyễn Vinh chi tiết giùm

3 tháng 12 2015

Ta có

T=/x-1/+/x-2/+/x-3/+/x-4/

=/x-1/+/2-x/+/x-3/+/4-x/

Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/

=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2

nhớ tick mình nha