Cho nửa (o) đường kính AB, điểm C cố định. M thuộc cung AC. Hạ Mh vuông góc vs AB, MB cắt CA tại E. Kẻ EI vuông góc vs AB. K là giao điểm của AC và MH. CM Khi M di động trên cung AC thì đường tròn ngoại tiếp tam giác MIC đi qua 2 điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AMB=góc ACB=1/2*sđ cung AB=90 độ
=>AM vuông góc MB và AC vuông góc CB
góc BHK+góc BCK=180 độ
=>BHKC nội tiếp
góc EIA+góc EMA=180 độ
=>EIAM nội tiếp
b: Xét ΔAMK và ΔACM có
góc AMK=góc ACM(=góc ABM)
góc MAK chung
=>ΔAMK đồng dạng với ΔACM
=>AM/AC=AK/AM
=>AM^2=AK*AC
c: Xét ΔAIE vuông tại I và ΔACB vuông tại C có
góc IAE chung
=>ΔAIE đồng dạng với ΔACB
=>AI/AC=AE/AB
=>AI*AB=AC*AE
Xét ΔBIE vuông tại I và ΔBMA vuông tại M có
góc IBE chung
=>ΔBIE đồng dạng với ΔBMA
=>BI/BM=BE/BA
=>BI*BA=BM*BE
=>AE*AC+BM*BE=AB^2
a) Xét (O) có
ΔCAB nội tiếp đường tròn(C,A,B∈(O))
AB là đường kính(gt)
Do đó: ΔCAB vuông tại C(Định lí)
⇔\(\widehat{ACB}=90^0\)
hay \(\widehat{KCB}=90^0\)
Xét tứ giác BHKC có
\(\widehat{BHK}\) và \(\widehat{KCB}\) là hai góc đối
\(\widehat{BHK}+\widehat{KCB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BHKC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ACB}=90^0\)
Xét tứ giác BHKC có
\(\widehat{BHK}+\widehat{BCK}=180^0\)
nên BHKC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc ACB=1/2*sđ cung AB=90 độ
Vì góc KHB+góc KCB=180 độ
=>BHKC nội tiếp
Xét ΔAHK vuông tại H và ΔACB vuôg tại C có
góc HAK chung
=>ΔAHK đồng dạng với ΔACB
=>AH/AC=AK/AB
=>AH*AB=AC*AK
b: Xét ΔBIE vuông tại I và ΔBMA vuông tại M có
góc IBE chung
=>ΔBIE đồng dạng với ΔBMA
=>BI/BM=BE/BA
=>BM*BE=BI*BA
Xét ΔAIE vuông tại I và ΔACB vuông tại C có
góc IAE chung
=>ΔAIE đồng dạng với ΔACB
=>AI/AC=AE/AB
=>AI*AB=AC*AE
=>BE*BM+AE*AC=AI*AB+BI*AB=AB^2 ko đổi
dễ cm AM2=Ah..AB
tứ giác KCBH nội típ => AH .AB=AK.AC ( hệ thức trong đg tròn)
Kẻ MH cắt (O) tại P, EI cắt (O) tại Q
Xét (O) có: \(\left\{{}\begin{matrix}MP\perp AO=\left\{H\right\}\\AO=R\end{matrix}\right.\)
\(\Rightarrow MH=HP\)
\(\Rightarrow\) \(s\bar{d}\stackrel\frown{MA}=s\bar{d}\stackrel\frown{AP}\)
Lại có: \(\widehat{AMC}=s\bar{d}\stackrel\frown{AC}/2\) (đl góc nội tiếp) (!)
\(\widehat{AKM}=(s\bar{d}\stackrel\frown{AM}+s\bar{d}\stackrel\frown{CP})/2\) (đl góc có đỉnh bên trong đường tròn)
( mà \(s\bar{d}\stackrel\frown{AM}=s\bar{d}\stackrel\frown{AP}\) )
\(\Leftrightarrow\) \(\widehat{AKM}=(s\bar{d}\stackrel\frown{AP}+s\bar{d}\stackrel\frown{PC})/2=s\bar{d}\stackrel\frown{AC}/2\) (!!)
Từ (!) (!!) \(\Rightarrow\) \(\widehat{AKM}=\widehat{AKM}\)
Xét ΔAKM∼ΔAMC vì:
\(\widehat{AKM}=\widehat{AKM}(cmtrn)\)
\(\widehat{MAC}:chung\)
\(\Rightarrow\frac{AM}{AC}=\frac{AK}{AM}\) \(\Leftrightarrow AK.AC=AM^2\) (đpcm)