cho tam giác can ABC. Trên BC lấy M,N sao cho BM=CN. Kẻ MD vuông góc AB tại D, NE vuông góc AC tại E. H là giao điểm DM và EN. Tia AM cắt BH tại P, AN cắt CH tại S. CMR PS//MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)
a: Xét ΔABE và ΔAME có
AB=AM
góc BAE=góc MAE
AE chung
=>ΔABE=ΔAME
=>EB=EM
b: Xét ΔEBD và ΔEMC có
góc EBD=góc EMC
EB=EM
góc BED=góc MEC
=>ΔEBD=ΔEMC
=>ED=EC
=>ΔEDC cân tại E
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔAMD=ΔAND
=>AM=AN
b: Xét ΔMNE có
ND là trung tuyến
ND=1/2ME
=>ΔMNE vuông tại N
=>NE vuông góc MN
ΔAMD=ΔAND
=>AM=AN và DM=DN
=>AD là trung trực của MN
=>AD vuông góc MN
=>AD//NE