K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2020

A=1 / 10+1 / 11+1 / 12+...+1 /99+1 /100

A=1 /10+(1 /11+1 /12+...+1 /99+1 /100)>1 /10+(1 /100+1 /100+...+1 /100)

=1 /10+90 /100=1

Vậy A>1

Chúc bn học tốt nhé

9 tháng 3 2016

ta co 1/50 >1/100

         1/51>1/100

         1/52>1/100

         ......... 

          1/99>1/100

 suy ra S=1/50 +1/51 +1/52 +.....+1/99>1/100*50=1/2 suy ra S>1/2

14 tháng 3 2019

https://www.youtube.com/watch?v=fBjsHQKClNA&index=7&list=PLq0mRSDfY0BAMTu98fNHi-Lg_E9BWDYhV

9 tháng 3 2016

ta có 1/50>1/100

1/51>1/100

1/52>1/100

................

1/99>1/100

suy ra S=1/50+1/51+1/52+..........+1/99>1/100x50=1/2

suy ra S=1/2

9 tháng 3 2016

Ta có: 

A = 1/2-1/3+1/4-1/5+1/6-1/7+ ..... +1/98-1/99 

=> -A = -1/2+1/3-1/4+1/5-1/6+1/7+ ..... -1/98+1/99 

=> -A = 1/2+1/3+1/4+1/5+ ... +1/98+1/99 - 2.(1/2+1/4+1/6+...+1/98) 

=> -A = 1/2+1/3+1/4+1/5+ ... +1/98+1/99 -(1+1/2+1/3+1/4+...+1/49) 

=> -A = -1+1/50+1/51+1/52+ ... +1/99 


Đặt: B = 1/50+1/51+1/52+ ... +1/99 

=> B = (1/50 +1/51+...+1/59) +(1/60+1/61+...+1/69) +(1/70+1/71+...+1/79) +(1/80+1/81+...+1/89) +(1/90+1/91+...+1/99) 

Do đó: 

10.(1/59)+10.(1/69)+10.(1/79) +10.(1/89)+10.(1/99) < B < 10.(1/50)+10.(1/60)+10.(1/70) +10.(1/80)+10.(1/90) 

=> 10.(1/60)+10.(1/70)+10.(1/80) +10.(1/90)+10.(1/100) < B < 10.(1/50)+10.(1/60)+10.(1/70) +10.(1/80)+10.(1/90) 

=> 1/6 +1/7 +1/8 +1/9 +1/10 < B < 1/5 +1/6 +1/7 +1/8 +1/9 

=> 0,6456 < B < 0,7456 

=> 3/5 < B < 4/5 

=> -2/5 < -1+B < -1/5 

=> -2/5 < -A < -1/5 

=> 1/5 < A <2/5

5 tháng 4

a: Ta có

A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)

⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng 

⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)

⇒ A > 1

vậy A > 1

b: ta có

S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)\(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)\(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)\(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))

⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))

⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)

⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)

⇔ S > \(\dfrac{107}{210}\)\(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)

vậy S > \(\dfrac{1}{2}\)

 

13 tháng 3 2016

ta có 1/50>1/100    

         1/51>1/100

       ..........

          1/99>1/100

  vậy S>1/100*50=1/2

suy ra S>1/2

4 tháng 3 2019

Ta có: 1/12>1/22 ; 1/13> 1/22.....1/21>1/22 
Vậy: 1/12+1/13+...+1/22 > 1/22+1/22+1/22+...+1/22 = 11/22 = 1/2 (có 11 số hạng1/22). 
hay: A>1/2 

14 tháng 3 2016

ta có:1/50>1/100

         1/51>1/100

          ...............

          1/99>1/100

=>S>50*1/100

=>S>1/2(đpcm)

14 tháng 3 2016

1/50>1/100

1/51>1/100

...................

1/99>1/100

=>S>50*1/100(do từ 1/50 đến 1/99 có 50 số hạng)

=>S>1/2