tính A=1/3.5+1/5.7 +1/7.9 + ... +1/37.39
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
✫¸.•°*”˜˜”*°•✫ Ṱђầภ Ḉђết ✫•°*”˜˜”*°•.¸✫ nhân A với 2 rồi phân tích như vậy được
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+....+\frac{1}{37\cdot39}\)
\(2A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+....+\frac{2}{37\cdot39}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......+\frac{1}{37}-\frac{1}{39}\)
\(2A=\frac{1}{3}-\frac{1}{39}=\frac{12}{39}=\frac{4}{13}\)
\(A=\frac{4}{13}:2=\frac{4}{13}\cdot\frac{1}{2}=\frac{2}{13}\)
Vậy \(A=\frac{2}{13}\)
Bài làm
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{37.39}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\)
\(A=\frac{1}{3}-\frac{1}{39}\)
\(A=\frac{13}{39}-\frac{1}{39}=\frac{12}{39}\)
Vậy \(A=\frac{12}{39}\)
B=1/3.5+1/5.7+1/7.9+...+1/37.39
=1/2(2/3.5+2/5.7+2/7.9+...+2/37.39)
=1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/37-1/39)
=1/2(1/3-1/39)
=1/2(13/39-1/39)
=1/2.4/13
=2/13
1/3.5+1/5.7+1/7.9+....+1/37.39
=1/2.(1/3-1/5+1/5-1/7+1/7-1/9+....+1/37-1/39)
=1/2.(1/3-1/39)
=1/2.4/13
2/13
**** bạn
A=1/1-1/2+1/2-1/3+1/3-1/4+....+1/49-1/50
A=1/1-1/50
A=49/50
Vay A=49/50
B=1/3-1/5+1/5-1/7....+1/37-1/39
B=1/3-1/39
b=36/117
B=4/13
a) \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\)
\(A=\frac{1}{3}-\frac{1}{39}\)
\(A=\frac{13}{39}-\frac{1}{39}=\frac{12}{39}\)
b) \(B=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{73.76}\)
\(B=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}-\frac{1}{76}\)
\(B=\frac{1}{4}-\frac{1}{76}\)
\(B=\frac{19}{76}-\frac{1}{76}=\frac{18}{76}=\frac{9}{38}\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
= \(1-\frac{1}{50}=\frac{49}{50}\)
B = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
= \(2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{37.39}\right)\)
= \(2.\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\right)\)
= \(\frac{2}{2}\left(\frac{1}{3}-\frac{1}{39}\right)\)
= \(\frac{4}{13}\)
C = \(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{73.76}\)
= \(3\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{73.76}\right)\)
= \(3.\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}-\frac{1}{76}\right)\)
= \(\frac{3}{3}\left(\frac{1}{4}-\frac{1}{76}\right)\)
= \(\frac{9}{38}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(C=\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{37\cdot39}\)
\(2C=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{37\cdot39}\)
\(2C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\)
\(2C=\dfrac{1}{3}-\dfrac{1}{39}\)
\(2C=\dfrac{4}{13}\)
\(C=\dfrac{2}{13}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{37.39}\)
\(C=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{39}\right)\)
\(C=\frac{1}{2}.\frac{12}{39}\)
\(C=\frac{4}{26}=\frac{2}{13}\)
Tham khảo :Câu hỏi của hoàng quỳnh dương - Toán lớp 7 - Học toán với OnlineMath
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\)
\(=\frac{1}{3}-\frac{1}{39}\)
\(=\frac{4}{13}\)
Study well ! >_<
=>2A=1/3-1/5+1/5-1/7+1/7-1/9+...+1/37-1/39
=>2A=1/3-1/39=4/13
=>A=2/13