K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2020

A=\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2018.2020}\)

\(\frac{1}{2}\)A= \(\frac{1}{2}.\left(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2018.2020}\right)\)

\(\frac{1}{2}A\)\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\)

\(\frac{1}{2}A\)\(\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{2020-2018}{2018.2020}\)

\(\frac{1}{2}A\)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\)

\(\frac{1}{2}A\)\(\frac{1}{2}-\frac{1}{2020}\)

\(\frac{1}{2}A=\frac{1009}{2020}\)

\(A=\frac{1009}{2020}:\frac{1}{2}\)

\(A=\frac{1009}{1010}\)

29 tháng 5 2020

a) Ta có 

A= 4/2*4+4/4*6+....+4/2018*2020

=> A= 2*(2/2*4+2/4*6+...+2*(2018*2020)

=> A= 2*(1/2-1/4+1/4-1/6+...+1/2018-1/2020)

=> A= 2*(1/2-1/2020)

=> A= 2* 1009/2020

=> A= 1009/1010

b) B= 1/18+1/54+1/108+...+1/990

=> B= 3/3*(1/18+1/54+1/108+..+1/990)

=> B= 1/3*( 3/3*6+3/6*9+...+3/30*33)

=> B= 1/3*(1/3-1/6+1/6-1/9+1/9-1/12+...+1/30-1/33)

=> B= 1/3*( 1/3-1/33)

=> B=1/3*10/33

=> B=10/99

21 tháng 8 2016

\(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+.....+\frac{4}{2008.2010}\)

\(\Rightarrow A=4\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{2008.2010}\right)\)

\(\Rightarrow A=4\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2008}-\frac{1}{2010}\right)\right]\)

\(\Rightarrow A=4\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2010}\right)\right]\Rightarrow A=4\left(\frac{1}{2}.\frac{502}{1005}\right)\Rightarrow A=4.\frac{251}{1005}\Rightarrow A=\frac{1004}{1005}\)

21 tháng 8 2016

\(B=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+....+\frac{1}{990}\)

\(\Rightarrow B=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+....+\frac{1}{30.33}\)

\(\Rightarrow B=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+.....+\frac{1}{30}-\frac{1}{33}\right)\)

\(\Rightarrow B=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\Rightarrow B=\frac{1}{3}.\frac{10}{33}\Rightarrow B=\frac{10}{99}\)

14 tháng 8 2016

dễ mà bạn làm từ câu a nếu ra thì các câu khác cũng dễ thôi

14 tháng 8 2016

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A=1-\frac{1}{2010}\)

\(A=\frac{2009}{2010}\)

1 tháng 8 2019

a, \(A=\frac{6}{10.11}+\frac{6}{11.12}+\frac{6}{12.13}+...+\frac{6}{69.70}\)

\(A=\frac{6}{10}-\frac{6}{11}+\frac{6}{11}-\frac{6}{12}+\frac{6}{12}-\frac{6}{13}+...+\frac{6}{69}-\frac{6}{70}\)

\(A=\frac{6}{10}-\frac{6}{70}\)

\(A=\frac{18}{35}\)

b, \(B=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2018.2020}\)

\(B=\frac{4}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\right)\)

\(B=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)

\(B=2.\left(\frac{1}{2}-\frac{1}{2020}\right)\)

\(B=2.\frac{1009}{2020}\)

\(B=\frac{1009}{1010}\)

Chúc bạn học tốt thanghoa

6 tháng 10 2019

vuiHơi thắc mắc câu B cậu oi!!!Gỉai thích cho mk vs ạ!!Thanks

10 tháng 5 2016

\(K=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(K=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(K=2\times\frac{502}{1005}\)

\(K=\frac{1004}{1005}\)

\(F=\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\)

\(3F=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\)

\(3F=\frac{1}{3}-\frac{1}{33}\)

\(F=\frac{10}{33}:3\)

\(F=\frac{10}{99}\)

\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(I=1-\frac{1}{2010}\)

\(I=\frac{2009}{2010}\)

30 tháng 7 2019

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\)

\(=\frac{1}{2}-\frac{1}{2020}=\frac{1009}{2020}\)

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2018.2020}\)

\(\Leftrightarrow A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}\right)\)

\(\Leftrightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2018}-\frac{1}{2020}\right)\)

\(\Leftrightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2020}\right)=\frac{1}{2}.\frac{1009}{2020}\)

\(\Leftrightarrow A=\frac{1009}{4040}\)

Vậy : \(A=\frac{1009}{4040}\)

4 tháng 3 2020

a) \(I=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2009\cdot2010}\)

\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2009}-\frac{1}{2010}\)

\(I=1-\frac{1}{2010}=\frac{2009}{2010}\)

b) \(K=\frac{4}{2\cdot4}+\frac{4}{2\cdot6}+\frac{4}{6\cdot8}+....+\frac{4}{2008\cdot2010}\)

\(\frac{1}{2}K=\frac{1}{2}\left(\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+\frac{4}{6\cdot8}+....+\frac{4}{2008\cdot2010}\right)\)

\(\frac{1}{2}K=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\)

\(\frac{1}{2}K=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{2008}-\frac{2}{2010}\)

\(\frac{1}{2}K=1-\frac{1}{2010}=\frac{2009}{2010}\)

\(K=\frac{2009}{2010}:\frac{1}{2}=\frac{2009}{1005}\)

11 tháng 3 2020

\(B=\frac{3}{2.4}-\frac{5}{4.6}+\frac{7}{6.8}-\frac{9}{8.10}+...+\frac{2019}{2018.2020}\)

\(B=\frac{3}{2.1.2.2}-\frac{5}{2.2.2.3}+\frac{7}{2.3.2.4}-\frac{9}{2.4.2.5}+...+\frac{2019}{2.1009.2.1010}\)

\(B=\frac{1}{4.}.\left(\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+...+\frac{2019}{1009.1010}\right)\)

\(B=\frac{1}{4.}.\left(\frac{3}{1}-\frac{3}{2}-\frac{5}{2}+\frac{5}{3}+\frac{7}{3}-\frac{7}{4}-\frac{9}{4}+\frac{9}{5}+...+\frac{2019}{1009}-\frac{2019}{1010}\right)\)

\(B=\frac{1}{4.}.\left(\frac{3}{1}-4+4-4+4-...+4-\frac{2019}{1010}\right)\)

\(B=\frac{1}{4.}.\left(\frac{3}{1}-\frac{2019}{1010}\right)=\frac{1011}{4040}\)

27 tháng 3 2015

K = 4/2 - 4/4 + 4/4 - 4/6 + ....... + 4/2008 - 4/2010

K = 4/2 - 4/2010

K = 4016/2010 = 1/1003/1005

27 tháng 3 2015

\(\frac{1004}{1005}\)