Giúp với
Bài 1. Cho tam giác ABC nhọn (AB<AC) vẽ đường cao BD, CE
a) Chứng minh tam giác ABD đồng dạng tam giác ACE
b) Chứng minh tam giác ADE đồng dạng tam giác ABC
c) Tia DE cắt CD tại i. Chứng minh iB.iC=iE.iD
d) Gọi O là trung điểm BC. Chứng minh iD.iE=Oi^2 - OC^2
Bài 2. Cho tam giác ABC vuông tại A, kẻ đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB^2=HB.HC
b) Chứng minh AH^2=HB.HC
c) kẻ HD vuông AC tại D. Đường trung tuyến CM của tam giác ABC cắt tại HD tại N. Chứng minh HN phần BM = CN phần CM và HN=DN
Bài 3. Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, AH là đường cao. Tính BC, AH
Bài 4. Cho tam giác ABC (AB<AC), tia phân giác của góc A cắt cạnh BC tại D. Từ B kẻ BE vuông AD (E thuộc AD) , từ C kẻ CF vuông AD (F thuộc AD). Chứng minh :
a) tam giác ABE đồng dạng tam giác ACF
b) AB.AF = AC.AE
c) BE phần CF = DE phần DF
Bài 5. Cho tam giác ABC vuông tại A, lấy điểm D bất kì thuộc cạnh BC. Từ D kẻ đường thẳng vuông góc với AB tại E, vuông góc AC tại F
a) Chứng minh tam giác BED đồng dạng tam giác BAC
b) Chứng minh DB phần DC = FA phần FC
c) Trên tia đối của tia ED lấy điểm K sao cho EK=ED. Gọi H là giao điểm của KC và EF. Chứng minh tam giác HKE đồng dạng tam giác HCF
d) chứng minh DH//BK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sao bạn đăng bài dài dòng quá z(Đã thế đây lại còn là bài hình nữa chứ)?????? Nếu bạn muốn mọi người có trả lời giùm bạn thì bạn đăng từng câu hỏi thui chứ. Nhìn bài bạn đăng đã thấy ngán đến tận cổ, chẳng ai chịu giúp bạn đâu =,=' 0_0
xét tam giác AHB vuông tại H (Gt)
=> AH HC ^2 + BH^2 = AB^2
AH = 12; AB = 13 (gt)
=> 12^2 + BH^2 = 13^2
=> BH = 5 do BH > 0
có BH + HC = BC
HC = 16 (gt)
=> BC = 21
dùng pytago tính ra AC = 40
*Tính AC
Áp dụng định lí pytago vào ΔAHC vuông tại H, ta được
\(AC^2=AH^2+CH^2\)
hay \(AC^2=12^2+16^2=400\)
⇒\(AC=\sqrt{400}=20cm\)
*Tính HB
Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được
\(AB^2=AH^2+BH^2\)
hay \(HB^2=AB^2-AH^2=13^2-12^2=25\)
⇒\(HB=\sqrt{25}=5cm\)
*Tính BC
Ta có: HB+HC=BC(H nằm giữa B và C)
hay 5+16=BC
⇔BC=21cm
Vậy: AC=20cm; HB=5cm; BC=21cm
Ta có: AB=13 cm
BD=5 cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABD
AB^2=BD^2+AD^2
=> AD^2=AB^2-BD^2=13^2-5^2=144
=> AD=\(\sqrt{144}=12cm\)
Áp dụng định lí Py-ta-go vào tam giác vuông ADC
AC^2=AD^2+DC^2
=> DC^2=AC^2-AD^2=15^2-12^2=81
DC=\(\sqrt{81}=9cm\)
Câu 2 từ từ
Hình tự vẽ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Théo đề ta có: AB+AC=49
AB-AC=7
=> AB=(49+7)/2=28 cm
AC=28-7=21 cm
Áp dụng định lí Py ta go vào tam giác vuông ABC
BC^2=AC^2+AB^2=28^2+21^2=1225
BC=\(\sqrt{1225}=35cm\)
1) Áp dụng định lý Py-ta-go cho tam giác vuông ABD, ta có:
AD2 + BD2 = AB2 => AD2 + 52 = 132 => AD2 = 132 - 52 = 169 - 25 = 144 = 122 => AD = 12 cm
Áp dụng định lý Py-ta-go cho tam giác vuông ADC, ta có:
AD2 + DC2 = AC2 => 122 + DC2 = 152 => DC2 = 152 - 122 = 225 - 144 = 81 = 92 => CD = 9
2) AB = (49 + 7) : 2 = 28 cm
AC = 28 - 7 = 21 cm
Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:
AB2 + AC2 = BC2 = 282 + 212 = 352 => BC = 35 cm
a)Tam giác AHB vuông tại H nên :
AB2 = AH2 + HB2
132 = 122 + HB2
=> HB2 = 132 - 122
HB2 = 169 - 144 = 25 = 52
=> HB = 5cm
Tam giác AHC vuông tại H nên :
AC2 = AH2 + HC2
AC2 = 122 + 162
AC2 = 144 + 256 = 400 = 202
=> AC = 20cm