K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2020

Một người đều chơi 9 trận với 9 người người khác không có trận hòa. 

Do đó: \(x_1+y_1=x_2+y_2=....=x_{10}+y_{10}=9\)

Mà tổng số trận thắng bằng tổng số trận thua do đó:

\(x_1+x_2+...+x_{10}=y_1+y_2+y_3+...+y_{10}\)

Ta có: \(\left(x_1^2+x_2^2+...+x_{10}^2\right)-\left(y_1^2+y_2^2+...+y_{10}^2\right)\)

\(=\left(x_1^2-y_1^2\right)+\left(x_2^2-y_2^2\right)+.....+\left(x_{10}^2-y_{10}^2\right)\)

\(=9\left(x_1-y_1\right)+9\left(x_2-y_2\right)+....+9\left(x_{10}-y_{10}\right)\)

\(=9\left(x_1-y_1+x_2-y_2+....+x_{10}-y_{10}\right)\)

\(=9\left[\left(x_1+x_2+...+x_{10}\right)-\left(y_1+y_2+y_3+....+y_{10}\right)\right]=0\)

Vậy \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+....+y_{10}^2\)

1. Cho hình bình hành ABCD. Đường thẳng qua C vuông góc với CD cắt đường thẳng qua A vuông góc với BD tại F. Đường thẳng qua B vuông góc với AB cắt đường trung trực của AC tại E. Hai đường thẳng BC và EF cắt nhau tại K. Tính tỉ số \(\frac{KE}{KF}\)2. Cho tam giác ABC có 3 góc nhọn nội tiếp (O). M trung điểm BC, N đối xứng với M qua O. Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B...
Đọc tiếp

1. Cho hình bình hành ABCD. Đường thẳng qua C vuông góc với CD cắt đường thẳng qua A vuông góc với BD tại F. Đường thẳng qua B vuông góc với AB cắt đường trung trực của AC tại E. Hai đường thẳng BC và EF cắt nhau tại K. Tính tỉ số \(\frac{KE}{KF}\)

2. Cho tam giác ABC có 3 góc nhọn nội tiếp (O). M trung điểm BC, N đối xứng với M qua O. Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B vuông góc với BC tại D. Kẻ đường kính AE. CMR:

a) BA.BC = 2BD.BE

b) CD đi qua trung điểm của đường cao AH của ttam giác ABC.

3. Có 10 vận động viên tham gia đấu quần vợt. Cứ 2 người trong họ chơi với nhau đúng 1 trận. Người thứ nhất thắng x1 trận và thua y1 trận; người thứ hai thắng x2 trận và thua y2 trận; ...; người thứ mười thắng x10 trận và thua y10 trận. Biết trong 1 trận đấu quần vợt ko có kết quả hòa. CMR: \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+...+y_{10}^2\)

1
26 tháng 3 2017

Chỉ hướng dẫn câu đại thôi nhé

Theo đề bài thì ta có hai giả thuyết sau

\(\hept{\begin{cases}x_1+y_1=x_2+y_2=...=x_{10}+y_{10}=10\\x_1+x_2+...+x_{10}=y_1+y_2+...+y_{10}\end{cases}}\)

Theo đề bài thì

\(x^2_1+x^2_2+...+x^2_{10}=y_1^2+y^2_2+...+y^2_{10}\)

\(\Leftrightarrow\left(x^2_1-y^2_1\right)+\left(x^2_2-y^2_2\right)+...+\left(x^2_{10}-y^2_{10}\right)=0\)

\(\Leftrightarrow10\left(x_1-y_1\right)+10\left(x_2-y_2\right)+...+\left(x_{10}-y_{10}\right)=0\)

\(\Leftrightarrow x_1+x_2+...+x_{10}-y_1-y_2-...-y_{10}=0\)ĐPCM 

23 tháng 12 2017

khó đấy

23 tháng 12 2017

Có tổng cộng 21 ván đấu, trong đó A đấu 10 trận, BvsC 11 trận. Căn cứ theo điều kiện bài thì không thể có 2 ván đấu liên tiếp nhau có cùng 2 người chơi, suy ra giữa 11 trận BvsC tạo ra 10 khoảng trống và mối khoảng trống là 1 trận A đấu. Do đó A luôn thua và người thua ván thứ 2 là A

4 tháng 11 2016

Trận thắng 3 điểm, trận hòa 2 điểm (vì mỗi đội được 1 điểm).
số trận thắng-thua gấp đôi số trận hòa
Tổng số điểm là 176 điểm.
Tỉ số điểm cho trận thắng-thua và hòa là:  (3x2) / (2x1) = 3/1
Tổng số phần bằng nhau:
1 + 3 = 4 (phần)
Số điểm cho các đội hòa là:
176 : 4 = 44 (điểm)
Số trận hòa là:
44 : 2 = 22 (trận)
Số điểm cho các trận thắng thua là :
176 – 44 = 132 (điểm)
Số trận thắng thua là :
132 : 3 = 44 (trận)
Tổng số các trận đấu là :
22 + 44 = 66 (trận)
Do k là số đội nên số trận đấu sẽ là :
k x (k-1) : 2
Ta được :
k x (k-1) : 2 = 66
k x (k-1) = 66x2 = 132
Do k và (k-1) là 2 số tự nhiên liên tiếp và 132 = 12 x 11
nên k = 12                               (Hay có 12 đội thi đấu.)

5 tháng 4 2019

12 trận thi đấu

31 tháng 8 2015

fgdjuhguhydygbvhfvsbydf

17 tháng 3 2022

giúp mik vs