10 vận động viên tham gia cuộc thi đấu quần vợt. Cứ 2 người trong họ chơi với nhau đúng 1 trận. Người thứ nhất thắng x1 trận và thua y1 trận, người thứ hai hắng x2 trận và thua y2 trận,..., người thứ mười thắng x10 trận và thua y10 trận. Biết rằng trong 1 trận đấu quần vợt không có kết quả hòa. CMR: \(x^2_1+x^2_2+...+x^2_{10}=y^2_1+y^2_2+...+y^2_{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ hướng dẫn câu đại thôi nhé
Theo đề bài thì ta có hai giả thuyết sau
\(\hept{\begin{cases}x_1+y_1=x_2+y_2=...=x_{10}+y_{10}=10\\x_1+x_2+...+x_{10}=y_1+y_2+...+y_{10}\end{cases}}\)
Theo đề bài thì
\(x^2_1+x^2_2+...+x^2_{10}=y_1^2+y^2_2+...+y^2_{10}\)
\(\Leftrightarrow\left(x^2_1-y^2_1\right)+\left(x^2_2-y^2_2\right)+...+\left(x^2_{10}-y^2_{10}\right)=0\)
\(\Leftrightarrow10\left(x_1-y_1\right)+10\left(x_2-y_2\right)+...+\left(x_{10}-y_{10}\right)=0\)
\(\Leftrightarrow x_1+x_2+...+x_{10}-y_1-y_2-...-y_{10}=0\)ĐPCM
Có tổng cộng 21 ván đấu, trong đó A đấu 10 trận, BvsC 11 trận. Căn cứ theo điều kiện bài thì không thể có 2 ván đấu liên tiếp nhau có cùng 2 người chơi, suy ra giữa 11 trận BvsC tạo ra 10 khoảng trống và mối khoảng trống là 1 trận A đấu. Do đó A luôn thua và người thua ván thứ 2 là A
Trận thắng 3 điểm, trận hòa 2 điểm (vì mỗi đội được 1 điểm).
số trận thắng-thua gấp đôi số trận hòa
Tổng số điểm là 176 điểm.
Tỉ số điểm cho trận thắng-thua và hòa là: (3x2) / (2x1) = 3/1
Tổng số phần bằng nhau:
1 + 3 = 4 (phần)
Số điểm cho các đội hòa là:
176 : 4 = 44 (điểm)
Số trận hòa là:
44 : 2 = 22 (trận)
Số điểm cho các trận thắng thua là :
176 – 44 = 132 (điểm)
Số trận thắng thua là :
132 : 3 = 44 (trận)
Tổng số các trận đấu là :
22 + 44 = 66 (trận)
Do k là số đội nên số trận đấu sẽ là :
k x (k-1) : 2
Ta được :
k x (k-1) : 2 = 66
k x (k-1) = 66x2 = 132
Do k và (k-1) là 2 số tự nhiên liên tiếp và 132 = 12 x 11
nên k = 12 (Hay có 12 đội thi đấu.)
Một người đều chơi 9 trận với 9 người người khác không có trận hòa.
Do đó: \(x_1+y_1=x_2+y_2=....=x_{10}+y_{10}=9\)
Mà tổng số trận thắng bằng tổng số trận thua do đó:
\(x_1+x_2+...+x_{10}=y_1+y_2+y_3+...+y_{10}\)
Ta có: \(\left(x_1^2+x_2^2+...+x_{10}^2\right)-\left(y_1^2+y_2^2+...+y_{10}^2\right)\)
\(=\left(x_1^2-y_1^2\right)+\left(x_2^2-y_2^2\right)+.....+\left(x_{10}^2-y_{10}^2\right)\)
\(=9\left(x_1-y_1\right)+9\left(x_2-y_2\right)+....+9\left(x_{10}-y_{10}\right)\)
\(=9\left(x_1-y_1+x_2-y_2+....+x_{10}-y_{10}\right)\)
\(=9\left[\left(x_1+x_2+...+x_{10}\right)-\left(y_1+y_2+y_3+....+y_{10}\right)\right]=0\)
Vậy \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+....+y_{10}^2\)