So sánh hai biểu thức sau:A=5 mũ 2010+1\5 mũ 2011+1. Và. B=5 mũ 2009+1\5 mũ 2010+ .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên chúng ta sẽ so sánh như sau
5^2010 và 5^2009
vì 2010>2009 nên 5^2010>5^200 (1)
1/5^2011+1 và 1/5^2010+1
vì 2011+1=2012
2010+1=2011
mà 2012>2011 nên 1/5^2011+1>1/5^2010+1 (2)
Từ 1 và 2 ta có thể suy ra A>B
Vậy A>B
ta có 2010 >2009 suy ra 5^2010 >5^2009 suy ra 5^2010 + 1>5^2009 +1 (1)
2011>2010 suy ra 5^2011 >5^2010 suy ra 1/5^2011<1/5^2010 suy ra 1/5^2011 +1 <1/5^2010 + 1 (2)
từ (1) và (2) => A=B
\(5A=\dfrac{5^{2022}+5}{5^{2022}+1}=1+\dfrac{4}{5^{2022}+1}\)
Sửa đề: \(B=\dfrac{5^{2020}+1}{5^{2021}+1}\)
=>\(5B=\dfrac{5^{2021}+5}{5^{2021}+1}=1+\dfrac{4}{5^{2021}+1}\)
5^2022>5^2021
=>5^2022+1>5^2021+1
=>5A<5B
=>A<B
So Sánh
12 mũ 18 và 5 mũ 27
12 mũ 18 và 27 mũ 6.169
4 mũ 4 và 64 mũ 7
2009 mũ 10+2009 mũ 9 và 2010 mũ 10
A=(1+2010)+2010 mũ 2+2010 mũ 3 +...+2010 mũ 6 + 2010 mũ 7
A=2011+2010 mũ 2(1+2010)+...+2010 mũ 6(1+2010)
A=2011+2010 mũ 2.2011+...2010 mũ 6.2011
A=2011(1+2010+...+2010 mũ 6)chia hết cho 2011
\(A=2^0+2^1+2^2+2^3+...+2^{2010}\)
\(A=1+2+2^2+2^3+...+2^{2010}\)
\(2A=2+2^2+2^3+...+2^{2011}\)
\(2A-A=\left[2+2^2+2^3+...+2^{2011}\right]-\left[1+2+2^2+2^3+...+2^{2010}\right]\)
\(A=2^{2011}-1\)
Mà \(B=2^{2011}-1\)
=> A = B
Ta có: A=\(2^0+2^1+2^2+2^3+...+2^{2010}\)
2A=\(2^1+2^2+2^3+2^4+...+2^{2011}\)
2A-A hay A=\(2^{2011}-2^0\)
=\(2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\)
\(\Rightarrow\)A=B
Hok tốt nha!!!
Ta có :
\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=\dfrac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)
\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=\dfrac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)
Vì \(1+\dfrac{2009}{2010^{2012}+1}< 1+\dfrac{2009}{2010^{2011}+1}\Rightarrow A< B\)
~ Học tốt ~
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Sorry mình viết thiếu B=5 mũ 2009\5 mũ 2010+1