K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 6 2020

\(a+b=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2=\frac{1}{4}\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2-4\left(a+b\right)\le0\)

\(\Leftrightarrow\left(a+b\right)\left(a+b-4\right)\le0\)

\(\Rightarrow0\le a+b\le4\)

\(\Rightarrow P_{min}=0\) khi \(a=b=0\)

\(P_{max}=505.4=2020\) khi \(a=b=2\)

10 tháng 6 2020

Ta có: \(a^2-ab+b^2=a+b\)

<=> \(a^2-a\left(b+1\right)+b^2-b=0\)

<=> \(a^2-2a.\frac{b+1}{2}+\left(\frac{b+1}{2}\right)^2-\frac{b^2}{4}-\frac{b}{2}-\frac{1}{4}+b^2-b=0\)

<=> \(\left(a-\frac{b+1}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2=1\)

Ta có: \(\left(a-\frac{b+1}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2=\frac{\left(a-\frac{b+1}{2}\right)^2}{1}+\frac{\left(\frac{3}{2}b-\frac{3}{2}\right)^2}{3}\)

\(\ge\frac{\left(a+b-2\right)^2}{4}\)

=> \(1\ge\frac{\left(a+b-2\right)^2}{4}\)

<=> \(\left(a+b-2\right)^2\le4\)

<=> \(-2\le a+b-2\le2\)

<=> \(0\le a+b\le4\)

mà  \(P=505a+505b=505\left(a+b\right)\)

=> \(0\le P\le2020\)

Dấu "=" xảy ra <=> \(\frac{a-\frac{b+1}{2}}{1}=\frac{\frac{3}{2}b-\frac{3}{2}}{3}\)<=> a = b 

Nếu P = 0 khi đó: a + b = 0 <=> a = b = 0 

Nếu P = 2020 <=>  a + b = 4 <=> a = b = 2

Vậy: GTNN của P = 0 đạt tại a = b = 0 

GTLN của P= 2020 đạt tại a = b = 2

4 tháng 7 2020

\(a^2-ab+b^2=a+b\Rightarrow\left(a-b\right)^2=a+b-ab\)

\(\left(a-b\right)^2\ge0\Rightarrow\left(a+b\right)\ge ab\Rightarrow2\left(a+b\right)\ge2ab\)

\(\Leftrightarrow\left(a+b\right)^2\le2\left(a+b\right)+a^2+b^2=2\left(a+b\right)+a+b+ab\le4\left(a+b\right)\)

\(\Leftrightarrow0\le a+b\le4\Leftrightarrow0\le P\le2020\)\(D=xr\Leftrightarrow\orbr{\begin{cases}a=b=0\\a=b=2\end{cases}}\)

7 tháng 6 2021

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

NV
26 tháng 1 2022

\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)

\(P_{min}=1\) khi \(a=b=c=1\)

\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)

Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)

\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)

\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)

\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)