trong mp Oxy, cho 2 điểm A(-2;3), B(1;-1)
a) viết pt tổng quát đg trung trực AB
b) viết pt đg tròn đi qua B và có tâm là A
c) viết pt đg tròn tâm đã cho biết tiếp tuyến song song với đg thg \(\Delta:3x+4y-1=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D thuộc trục Ox nên D(x;0)
\(DA=\sqrt{\left(-1-x\right)^2+\left(4-0\right)^2}=\sqrt{\left(x+1\right)^2+16}\)
\(DB=\sqrt{\left(0-x\right)^2+\left(-2-0\right)^2}=\sqrt{x^2+4}\)
Để ΔDAB cân tại D thì DA=DB
=>\(\left(x+1\right)^2+16=x^2+4\)
=>\(x^2+2x+1+16=x^2+4\)
=>2x+17=4
=>2x=4-17=-13
=>\(x=-\dfrac{13}{2}\)
Vậy: \(D\left(-\dfrac{13}{2};0\right)\)
\(\overrightarrow{AB}=\left(6;-2\right)\Rightarrow AB=2\sqrt{10}\)
Gọi I là trung điểm AB \(\Rightarrow I\left(1;4\right)\)
ĐƯờng tròn (C) nhận I là tâm và có bán kính \(R=\dfrac{AB}{2}=\sqrt{10}\)
Phương trình: \(\left(x-1\right)^2+\left(y-4\right)^2=10\)
Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)
3 điểm M;A;B thẳng hàng khi:
\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)
\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)
Sửa đề: C(2;2)
\(\overrightarrow{AB}=\left(6;-10\right)\)
\(\overrightarrow{DC}=\left(-3;5\right)\)
Vì vecto AB=-2vecto DC
nên AB//DC
=>ABCD là hình thang
\(\overrightarrow{AM}=\left(m+5;2m\right)\)
\(\overrightarrow{AB}=\left(1;2\right)\)
Để A,M,B thẳng hàng thì \(\dfrac{m+5}{1}=\dfrac{2m}{2}\)
=>m+5=m(loại)
Thay tọa độ A và B vào d thấy kết quả cùng dấu \(\Rightarrow\) A và B nằm cùng phía so với d
Gọi C là điểm đối xứng A qua d \(\Rightarrow MA=CM\Rightarrow MA+MB=CM+MB\ge CB\)
\(\Rightarrow MA+MB\) nhỏ nhất khi M;B;C thẳng hàng hay M là giao điểm của đường thẳng BC và d
Phương trình d' qua A và vuông góc d có dạng:
\(1\left(x-1\right)+2\left(y-0\right)=0\Leftrightarrow x+2y-1=0\)
D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+2y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;1\right)\)
C đối xứng A qua d khi và chỉ khi D là trung điểm AC \(\Rightarrow C\left(-3;1\right)\)
\(\Rightarrow\overrightarrow{CB}=\left(5;0\right)=5\left(1;0\right)\Rightarrow\) phương trình BC có dạng:
\(0\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow y-1=0\)
M là giao điểm d và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{2};1\right)\)
CD nhận \(\left(3;-4\right)\) là 1 vtpt
Đường thẳng AD vuông góc CD nên nhận \(\left(4;3\right)\) là 1 vtpt
Phương trình AD:
\(4\left(x+2\right)+3\left(y-1\right)=0\Leftrightarrow4x+3y+5=0\)
\(\overrightarrow{AB}=\left(3;-4\right)\) , gọi M là trung điểm AB \(\Rightarrow M\left(-\frac{1}{2};1\right)\)
Trung trực AB qua M và vuông góc AB nên có pt:
\(3\left(x+\frac{1}{2}\right)-4\left(y-1\right)=0\Leftrightarrow6x-8y+11=0\)
b/ \(AB=\sqrt{3^2+\left(-4\right)^2}=5\Rightarrow R=AB=5\)
Pt đường tròn: \(\left(x+2\right)^2+\left(y-3\right)^2=25\)
c/ Chắc là viết pttt?
Tiếp tuyến song song denta nên có pt: \(3x+4y+c=0\) (\(c\ne-1\))
d tiếp xúc (C) nên \(d\left(A;d\right)=R\Leftrightarrow\frac{\left|3.\left(-2\right)+4.3+c\right|}{\sqrt{3^2+4^2}}=5\)
\(\Leftrightarrow\left|c+6\right|=25\Rightarrow\left[{}\begin{matrix}c=19\\c=-31\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}3x+4y+19=0\\3x+4y-21=0\end{matrix}\right.\)